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A well-defined mathematical problem…
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Consider    particles constrained by (total) momentum conservation:
for instance, in the center-of-mass frame of the colliding nuclei, the 
particles emitted in a Au-Au collision satisfy                            . 
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Consider    particles constrained by (total) momentum conservation:
for instance, in the center-of-mass frame of the colliding nuclei, the 
particles emitted in a Au-Au collision satisfy                            . 
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What is the correlation between    arbitrary particles induced by the 
momentum-conservation constraint?
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Total momentum conservation 
and statistical studies of jets

 A few useful definitions and properties

 probability distributions, cumulants, generating functions...

 Multiparticle correlation induced by total momentum conservation

 a general, model-independent calculation

Eur. Phys. J. C 30 (2003) 381

 Focus on two- and three-particle correlations due to total momentum 
conservation: looking for a “minimally-biased reference” for jet studies

Phys. Rev. C 75 (2007) 021904(R); PoS (LHC07) 013
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Multiparticle distributions & cumulants
    -particle probability distribution                  : 

probability that particles {  ,   ,    ,    } have momenta    ,     ,     , 
irrespective of the momenta of the         other particles.

    normalized to unity:

A useful mathematical tool:

Generating function of the probability distribution:

             auxiliary (complex) variables

Independent particles: 

G(x1, . . . , xN ) = 1 + x1 f(p1) + x2 f(p2) + . . . + x1x2 f(p1,p2) + . . .

f(pi1 , . . .,piM )

f({pik
}) = O(1), ∀M

M

pi1 pi2 . . . piM
i1 i2 . . . iM

N−M

x1, . . . , xN

f(p1,p2, . . .,pN ) = f(p1) f(p2) · · · f(pN )



    -particle cumulant of the probability distribution                   :
connected part of the probability distribution, responsible for the 
“correlations” (= deviations from statistical independence)

(note:                …)

At the three-particle level:

M fc(pi1 , . . .,piM )

f(p1,p2) = fc(p1) fc(p2) + fc(p1,p2)
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Multiparticle distributions & cumulants

=                +
f(p) = fc(p)

=            +            +            +           +

In the following, I shall also use “reduced cumulants” 

f̄c(p1, . . .,pM ) ≡ fc(p1, . . .,pM )
f(p1) · · · f(pM )
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Multiparticle distributions & cumulants
Generating function of the cumulants:

lnG(x1, . . . , xN ) = x1 fc(p1) + x2 fc(p2) + . . . + x1x2 fc(p1,p2) + . . .

=    (      )    -    (  ) (  )

    automatically performs the inversions:

and so on…

=            -            -            -           + 2
(  )

(  ) (  )
(  )

(      )
(      )(  ) (  

   
 )

(  )

One can show that for a system made of independent sub-systems (or 
with short-range correlations only), the cumulants scale like 

fc(pi1 , . . .,piM ) = O
(

1
NM−1

)
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Multiparticle distributions & cumulants 
induced by 

total momentum conservation
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Total momentum conservation 
and    -particle distributionM

In the presence of the constraint from total momentum conservation, 
the    -particle probability distribution reads:M

which one then inserts in the generating function...

f(p1, . . .,pM ) ≡




M∏

j=1

F (pj)




∫

δD(p1 + · · · + pN )
N∏

j=M+1

[
F (pj) dDpj

]

∫
δD(p1 + · · · + pN )

N∏

j=1

[
F (pj) dDpj

]



                              
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Total momentum conservation 
and    -particle distributionM

In the presence of the constraint from total momentum conservation, 
the    -particle probability distribution reads:M

which one then inserts in the generating function...

single-particle distribution
in the absence of constraint

-independent denominatorM ≡ 1/CD

f(p1, . . .,pM ) ≡




M∏

j=1

F (pj)




∫

δD(p1 + · · · + pN )
N∏
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Total momentum conservation 
and    -particle distributionM

In the presence of the constraint from total momentum conservation, 
the    -particle probability distribution reads:M

which one then inserts in the generating function...

single-particle distribution
in the absence of constraint

-independent denominatorM ≡ 1/CD

∫
dDk

(2π)D

N∏

j=1

eik·pj

f(p1, . . .,pM ) ≡




M∏

j=1

F (pj)




∫

δD(p1 + · · · + pN )
N∏

j=M+1

[
F (pj) dDpj

]

∫
δD(p1 + · · · + pN )

N∏

j=1

[
F (pj) dDpj

]
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Generating function

G(x1, . . . , xN ) = CD

∫
dDk

(2π)D
〈eik·p〉N exp




N∑

j=1

xjF (pj)
eik·pj

〈eik·p〉





= CD

∫
dDk

(2π)D
exp



N



ln〈eik·p〉 +
N∑

j=1

x̄j

N

eik·pj

〈eik·p〉









                      

F(k)

G(x1, . . . , xN ) ∝ eNF(k0)



1 +
∑

q>l

xl

Nq





One can show (using a saddle-point method) that 

Introducing the notation                               , one finds: 〈g(p)〉 ≡
∫

g(p)F (p) dDp

saddle-point



G(x̄1, . . . , x̄N ) ∝ eNF(k0)



1 +
∑

q>l

x̄l

Nq




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Generating function

G(x1, . . . , xN ) = CD

∫
dDk

(2π)D
〈eik·p〉N exp




N∑

j=1

xjF (pj)
eik·pj

〈eik·p〉





= CD

∫
dDk

(2π)D
exp



N



ln〈eik·p〉 +
N∑

j=1

x̄j

N

eik·pj

〈eik·p〉









  

the unmeasurable     is absorbedF

                      

F(k)

One can show (using a saddle-point method) that 

Introducing the notation                               , one finds: 〈g(p)〉 ≡
∫

g(p)F (p) dDp

saddle-point
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Cumulants

lnG(x̄1, . . . , x̄N ) = ln CD + NF(k0) + ln
(

x̄l

Nq≥l

)The generating function of cumulants thus reads
                                                       function of

x̄independent of

   x̄

N
function of
x̄

N

x̄

N
only depends on                    function of F k0

F ′(k0) = 0(solution of             )

Hence the (scaled) cumulants:

f̄c(pi1 , . . .,piM ) = x̄i1 · · · x̄iM

NF(k0)
+O

(
1

NM

)
= O

(
1

NM−1

)
coef. of
     in

The cumulants arising from total momentum conservation follow the 
same scaling behaviour as those from short-range correlations!

N.B. 2003



F ′(k0) = 0



N∑

j=1

x̄j

N

eik0·pj

〈eik0·p〉 − 1



〈p eik0·p〉 =
N∑

j=1

x̄j

N
pjeik0·pj
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Computing the first cumulants
 The saddle-point     is given by              , i.e.

lnG(x̄1, . . . , x̄N ) = NF(k0) The cumulants are given by 

k0



F ′(k0) = 0



N∑

j=1

x̄j

N

eik0·pj

〈eik0·p〉 − 1



〈p eik0·p〉 =
N∑

j=1

x̄j

N
pjeik0·pj
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Computing the first cumulants
 The saddle-point     is given by              , i.e.

lnG(x̄1, . . . , x̄N ) = NF(k0) The cumulants are given by 

k0

f̄c(p1,p2) = −D p1 · p2

N〈p2〉which gives                             , of order           as expected O
(

1
N

)

ik0 = − D

〈p2〉

N∑

j=1

x̄j

N
pj

F(k0) =
N∑

j=1

x̄j

N
− D

2〈p2〉




N∑

j=1

x̄j

N
pj




2

To lowest order ,                           , hence  *

* assuming        isotropic, so that          andF (p) 〈p〉 = 0 〈(k0 · p)2〉 = k0
2〈p2〉/D
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Computing the first cumulants
x̄

N
Going to the next order in    , the generating function
yields the 3-particle cumulant:

lnG(x̄1, . . . , x̄N )

f̄c(p1,p2) = −D p1 · p2

N〈p2〉

f̄c(p1,p2,p3) = − D

N2〈p2〉 (p1 · p2 + p1 · p3 + p2 · p3)

+
D2

N2〈p2〉2 [(p1 · p2)(p1 · p3) + (p1 · p2)(p2 · p3)

+(p1 · p3)(p2 · p3)]

Back-to-back correlation, larger for 
particles with larger momenta
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Computing the first cumulants
x̄

N
Going to the next order in    , the generating function
yields the 3-particle cumulant:

lnG(x̄1, . . . , x̄N )

f̄c(p1,p2) = −D p1 · p2

N〈p2〉

f̄c(p1,p2,p3) = − D

N2〈p2〉 (p1 · p2 + p1 · p3 + p2 · p3)

+
D2

N2〈p2〉2 [(p1 · p2)(p1 · p3) + (p1 · p2)(p2 · p3)

+(p1 · p3)(p2 · p3)]

Want to relax the “isotropic emission” assumption?   (take    = 3)D

f̄c(p1,p2) = −p1,xp2,x

N〈p2
x〉

− p1,yp2,y

N〈p2
y〉

− p1,zp2,z

N〈p2
z〉

  ,  ,   principal axes of the          tensor 〈p⊗ p〉x y z

N.B. 2003, Chajȩcki & Lisa 2006

Back-to-back correlation, larger for 
particles with larger momenta
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Total momentum conservation induces 
correlations between any number of 

final-state particles

So what?
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Multiparticle probability distributions

 Conditional    -particle probability distribution: 
probability that particles {  ,   ,    ,    } have momenta    ,     ,     , 
provided the momenta of the         other particles take definite values

M

pi1 pi2 . . . piM
i1 i2 . . . iM

N−M

f(pi1 , . . .,piM

∣∣piM+1 , . . .,piN )

Let me use more precise definitions:

f(pi1 , . . .,piM ) =
∫

f(pi1 , . . .,piM

∣∣piM+1 , . . .,piN ) dpiM+1 . . .dpiN

which can be integrated over        ,     ,     :piM+1
. . . piN

In the presence of correlations (= non-vanishing cumulants), 
marginal and conditional probabilities differ!

f(pi1 , . . .,piM )M

pi1 pi2 . . . piM
i1 i2 . . . iM

N−M

 Marginal    -particle probability distribution                  : 
probability that particles {  ,   ,    ,    } have momenta    ,     ,     , 
irrespective of the momenta of the         other particles.
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Two-particle correlation due to total 
(transverse) momentum conservation

f(p1,p2) = f(p1)f(p2)
(

1 − p1,xp2,x

N〈p2
x〉

− p1,yp2,y

N〈p2
y〉

− p1,zp2,z

N〈p2
z〉

)

In an event with          particles in the final state, the conservation 
of total momentum induces a correlation between 2 arbitrary outgoing 
particles, so that the two-particle probability distribution reads:

N ! 1

〈p2
z〉 # 〈p2

x〉, 〈p2
y〉

〈p2
x〉 = 〈p2

y〉 = 〈pT
2〉/2

z

Considering for the sake of simplicity central nucleus-nucleus collisions 
(isotropic particle emission:                        ) and neglecting the 
longitudinal  -term (because                  ; additionally, we can focus on 
particles emitted close to mid-rapidity), this yields

f(pT 1,pT 2) = f(pT 1)f(pT 2)
(

1 − 2 pT 1pT 2 cos(ϕ2 − ϕ1)
N〈p2

T 〉

)

f(pT 2

∣∣pT 1) ≡
f(pT 2,pT 1)

f(pT 1)
= f(pT 2)

(
1− 2 pT 1pT 2 cos(ϕ2 − ϕ1)

N〈p2
T 〉

)

!= f(pT 2)

i.e.



N.Borghini — 16/20HEP 2007, Manchester, July 19, 2007

Two-particle correlation due to total 
transverse momentum conservation

Thus, given a first “trigger” particle with transverse momentum      , 
then the conditional probability to find a second “associated” particle 
with transverse momentum       is NOT given by the (marginal) single-
particle probability distribution (nor by a “minimum bias” version). 
For instance, even if the emission is a priori isotropic, the probability 
for      is larger “away” (in azimuth) from      .

pT 2

pT 1

pT 2 pT 1
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Two-particle correlation due to total 
transverse momentum conservation

Thus, given a first “trigger” particle with transverse momentum      , 
then the conditional probability to find a second “associated” particle 
with transverse momentum       is NOT given by the (marginal) single-
particle probability distribution (nor by a “minimum bias” version). 
For instance, even if the emission is a priori isotropic, the probability 
for      is larger “away” (in azimuth) from      .

pT 2

pT 1

pT 2 pT 1

px

py f(pT )
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Two-particle correlation due to total 
transverse momentum conservation

Thus, given a first “trigger” particle with transverse momentum      , 
then the conditional probability to find a second “associated” particle 
with transverse momentum       is NOT given by the (marginal) single-
particle probability distribution (nor by a “minimum bias” version). 
For instance, even if the emission is a priori isotropic, the probability 
for      is larger “away” (in azimuth) from      .

pT 2

pT 1

pT 2 pT 1

px

py f(pT )pT 1
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Two-particle correlation due to total 
transverse momentum conservation

One cannot speak of “a jet + an (uncorrelated) background event”!

Thus, given a first “trigger” particle with transverse momentum      , 
then the conditional probability to find a second “associated” particle 
with transverse momentum       is NOT given by the (marginal) single-
particle probability distribution (nor by a “minimum bias” version). 
For instance, even if the emission is a priori isotropic, the probability 
for      is larger “away” (in azimuth) from      .

pT 2

pT 1

pT 2 pT 1

px

py f(pT )

everything “recoils”

f(pT 2

∣∣pT 1)
≠pT 1
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Two-particle correlation due to total 
transverse momentum conservation

Because of global (transverse)-momentum conservation, the probability 
distribution of particles “associated” to a “trigger” differs from the 
single-particle probability distribution:

f(pT 2

∣∣pT 1) = f(pT 2)
(

1 − 2 pT 1pT 2 cos(ϕ2 − ϕ1)
N〈p2

T 〉

)

The difference increases with both      and     , and decreases with 
increasing number of final state particles   .

pT 1 pT 2

N

f(pT 2,pT 3

∣∣pT 1) = f(pT 2)f(pT 3)
×

[
1 + f̄c(pT 2,pT 3) + f̄c(pT 1,pT 3) + f̄c(pT 1,pT 2)

+ f̄c(pT 1,pT 2,pT 3)
]

"= f(pT 2)f(pT 3)

Similarly, at the three-particle level:
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Conditional and marginal probability 
distributions are different...

Because of global (transverse)-momentum conservation, the probability 
distribution of particles “associated” to a “trigger” differs from the 
single-particle probability distribution.

As a consequence, the average transverse momentum of associated 
particles restricted to an angular sector away from the trigger is 
always larger than the average transverse momentum of the whole 
event:

(note that the difference between            and          depends on 
the trigger-particle transverse momentum     ).

But this does not reflect any dynamics!

〈pT 〉assoc. =
∫ π+θ

π−θ

d(ϕ2 − ϕ1)
2θ

∫
dpT 2f(pT 2

∣∣pT 1) = 〈pT 〉all +
2pT 1

N

sin θ

θ

〈pT 〉assoc. 〈pT 〉all
pT 1
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Conditional and marginal probability 
distributions are different...

f(pT 2

∣∣pT 1) = f(pT 2)
[
1 − 2

N〈p2
T 〉

(
p1,xp2,x

1 + v̄2
+

p1,yp2,y

1 − v̄2

)]

= f(pT 2)
[
1 − 2pT 1pT 2

N〈p2
T 〉

(cos(ϕ1−ϕ2) − v̄2 cos(ϕ1+ϕ2))
]

v̄2 ≡
〈p2

x − p2
y〉

〈p2
x + p2

y〉

In the case of an anisotropic transverse emission of particles, 
characterized by                   , one finds

The size of the “bump” away from the trigger (              ) is larger 
for out-of-plane (         mod   ) than for in-plane (         mod   ) 
trigger particles.  

ϕ1−ϕ2 = π
ϕ1 = 0 πϕ1 =

π

2
π

But this does not reflect any dynamics!
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Total momentum conservation 
and statistical studies of jets

Total momentum conservation induces correlations between the 
particles emitted in a collision.

These correlations can be computed… and their value can be 
estimated if one “knows” the total emitted multiplicity    and the 
mean square momentum      .

can be treated as parameters

N
〈p2〉

Should we care? Yes!

  undoubtedly at SPS, most probably at RHIC, possibly (in the end, certainly) at LHC

*

*
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Total momentum conservation 
and statistical studies of jets

Total momentum conservation induces correlations between the 
particles emitted in a collision.

These correlations can be computed… and their value can be 
estimated if one “knows” the total emitted multiplicity    and the 
mean square momentum      .

can be treated as parameters

N
〈p2〉

Should we care? Yes!

        in order to be in position to assess quantitatively genuine 
dynamical effects, not something trivial, through correlation studies...

  undoubtedly at SPS, most probably at RHIC, possibly (in the end, certainly) at LHC

*

*


