Twistor inspired Higgs phenomenology

Nigel Glover

IPPP, Durham University

European Physical Society HEP07,

Manchester, July 2007

Introduction

Witten's proposal to relate perturbative gauge theory amplitudes to topological string theory in twistor space has inspired new ways of calculating amplitudes in massless gauge theories:

✓ MHV rules

Cachazo, Svrcek and Witten

⇒ NEW analytic results for some QCD tree amplitudes with any number of legs

- ✓ BCF on-shell recursion relations
 Britto, Cachazo and Feng (and Witten)
 - \Rightarrow NEW compact results for some multileg QCD tree amplitudes
- Unitarity and cut-constructibility

Bern, Dixon, Dunbar, Kosower; Britto, Cachazo and Feng; ...

- ⇒ NEW analytic one-loop amplitudes in massless supersymmetric theories
- Recursive derivation of rational terms

Bern, Dixon, Kosower + Berger, Forde; Xiao, Yang, Zhu

 \Rightarrow NEW analytic one-loop amplitudes for multigluon amplitudes

Outline of Talk

Interesting to explore the strengths and weaknesses of the new methods for other Standard Model processes of phenomenological relevance

- ✓ Processes involving Higgs
 - The Higgs model in the large top-mass limit
 - Tree-level Higgs plus multi-parton amplitudes

Dixon, EWNG, Khoze; Badger, EWNG, Khoze

One-loop Higgs plus multi-parton amplitudes

Badger, EWNG; Berger, Del Duca, Dixon; Badger, EWNG, Risager

The Higgs Model

 \checkmark In the large top mass limit, we have the effective interaction

$$\mathcal{L}_{H}^{\text{int}} = \frac{C}{2} H \operatorname{Tr} G_{\mu\nu} G^{\mu\nu} , \qquad C = \frac{\alpha_s}{6\pi v} \left(1 + \mathcal{O}(\alpha_s) \right)$$

Wilczek; Shifman, Vainshtein, Zakharov

Previously known amplitudes (in large m_t limit)

H + n partons	no-loops	one-loop	two-loop
2	1	1	1
3	1	\checkmark	1
4	1	\checkmark	
5	1		
6			

✓ Higgs cross section, Higgs transverse momentum, background to weak boson scattering,

The Higgs Model

✓ Introduce a complex field $\phi = \frac{1}{2}(H + iA)$ and divide $\mathcal{L}_{H}^{\text{int}}$ into two terms, containing purely selfdual (SD) and purely anti-selfdual (ASD) gluon field strengths

$$\mathcal{L}_{H,A}^{\text{int}} = \frac{1}{2} \Big[H \operatorname{Tr} G_{\mu\nu} G^{\mu\nu} + iA \operatorname{Tr} G_{\mu\nu} {}^*G^{\mu\nu} \Big]$$
$$= \phi \operatorname{Tr} G_{SD \ \mu\nu} G^{\mu\nu}_{SD} + \phi^{\dagger} \operatorname{Tr} G_{ASD \ \mu\nu} G^{\mu\nu}_{ASD}$$

Dixon, EWNG and Khoze

- ✓ Natural link with QCD when momentum of Higgs $\rightarrow 0$
- ✓ Higgs amplitudes obtained by adding ϕ and ϕ^{\dagger} amplitudes

The Higgs Model

- ✓ The key point is that the amplitudes for ϕ plus *n* gluons, and those for ϕ^{\dagger} plus *n* gluons, separately have a simpler structure than the amplitudes for *H*.
- ✓ It can be shown that (Berends-Giele currents/SUSY WI) the colour ordered subamplitudes are

$$\checkmark \quad A_n(\phi, 1^{\pm}, 2^+, 3^+, \dots, n^+) = 0$$

$$\checkmark \qquad A_n(\phi^{\dagger}, 1^{\pm}, 2^+, 3^+, \dots, n^+) \neq 0$$

✓ The ϕ -MHV amplitudes, with precisely two negative helicities, are the first non-vanishing ϕ amplitudes.

ϕ plus multi-gluon tree amplitudes

✓ Furthermore, the ' ϕ -MHV' amplitudes have precisely the same form as the QCD case — except for the implicit momentum carried out of the process by the Higgs boson.

$$A_n(\phi, 1^+, \dots, p^-, \dots, q^-, \dots, n^+) = \frac{\langle p \, q \rangle^4}{\langle 1 \, 2 \rangle \, \langle 2 \, 3 \rangle \cdots \langle n - 1, \, n \rangle \, \langle n \, 1 \rangle}$$

- ✓ Solid red dots represent fundamental ϕ -MHV vertices.
- Open circles are composite φ amplitudes, which are built from the φ-MHV vertices plus pure-gauge-theory MHV vertices.

MHV rules

Start from on-shell MHV amplitude and define off-shell vertices

$$V(1^-, 2^-, 3^+, \dots, n^+, P^+) = \frac{\langle 12 \rangle^4}{\langle 12 \rangle \cdots \langle n-1n \rangle \langle nP \rangle \langle P1}$$

and

$$V(1^{-}, 2^{+}, 3^{+}, \dots, n^{+}, P^{-}) = \frac{\langle 1P \rangle^{4}}{\langle 12 \rangle \cdots \langle n - 1n \rangle \langle nP \rangle \langle P1 \rangle}$$

connected by scalar propagators Crucial step is off-shell continuation $P^2 \neq 0$:

$$\langle iP \rangle = \frac{\langle i^- | \mathcal{P} | \boldsymbol{\eta}^-]}{[P \boldsymbol{\eta}]} = \sum_j \frac{\langle i^- | \mathcal{j} | \boldsymbol{\eta}^-]}{[P \boldsymbol{\eta}]}$$

where $P = \sum_{j} j$ and η is lightlike auxiliary vector

n+

MHV rules for Higgs+gluon amplitudes

The MHV rules for computing Higgs plus *n*-gluon scattering amplitudes can be summarized as follows:

- ✓ For the ϕ couplings, everything is exactly like the MHV rules (except for the momentum carried by ϕ).
- ✓ For ϕ^{\dagger} , we just apply parity. That is, we compute with ϕ , and reverse the helicities of every gluon. Then we let $\langle i j \rangle \leftrightarrow [j i]$ to get the desired ϕ^{\dagger} amplitude.
- ✓ For *H*, we add the ϕ and ϕ^{\dagger} amplitudes.

These rules can easily be used to reproduce all of the available analytic formulae for tree-level Higgs + n-gluon scattering ($n \le 5$) at tree level and derive new expressions for $n \ge 6$.

Dixon, EWNG and Khoze

✓ Easily extended to include massless quarks

Badger, EWNG and Khoze

NMHV $A_n(\phi, m_1^-, m_2^-, m_3^-, ...)$ **amplitudes**

The all-minus tree amplitude

- ✓ The *n*-point all-minus tree amplitudes are constructed by joining n 2 three point vertices.
- ✓ All orders result proved by coupling off-shell Berends-Giele currents.

One-loop amplitudes

✓ In general, loop amplitudes contain both poles and cuts

 $A_n^1 \sim (\text{poly}) \log s + \text{rational}$

e.g. $\log(x)$ has cut for negative x

- Iogarithmic terms can be constructed from cuts using unitarity double cuts, or generalised cuts
- rational parts only have simple poles and can be constructed using BCF type recursion and knowledge of factorisation properties
 Collectively this is the Unitarity Bootstrap

One-loop amplitudes

✓ Aim to use these methods to compute MHV - - + + ... and all-minus (googly) - - - - ... one-loop Higgs amplitudes

Badger, EWNG; Badger, EWNG, Risager

✓ Recall

$$A_n^{(1)}(H;\dots) = A_n^{(1)}(\phi;\dots) + A_n^{(1)}(\phi^{\dagger};\dots)$$

so only compute ϕ amplitude

✓ Separate out cut-constructible (C) and rational (R) parts

$$A_n^{(1)}(\phi;\cdots) = A_n^{(1),C}(\phi;\cdots) + A_n^{(1),R}(\phi;\cdots)$$

- ✓ Work in non-supersymmetric theory
- \checkmark The finite ϕ and plus, and one-minus now available

Berger, Del Duca, Dixon

At least three different methods - all based on connecting on-shell 4-dimensional vertices

Bern, Dixon, Dunbar, Kosower; Britto, Cachazo, Feng; Brandhuber, Spence, Travaglini

- Reconstruct coefficients of basis set of integrals boxes, triangles, bubbles
 - 1. Classic double cut + collinear factorisation (triple cut)

Bern, Dixon, Dunbar, Kosower (94)

2. Generalised (quadruple cut) unitarity and holomorphic anomaly

Britto, Cachazo, Feng

Reconstruct full amplitude by doing phase space and dispersion integrals

Brandhuber, Spence, Travaglini

Choose to use MHV-rules method

Brandhuber, Spence and Travaglini

Connect on-shell 4-dimensional vertices with off-shell propagators

$$\int \frac{d^4 L_1}{L_1^2} \frac{d^4 L_2}{L_2^2} \delta^4 (L_1 + P_{i+1,j} - L_2) \mathcal{A}_L(\ell_2, \dots, -\ell_1) \mathcal{A}_R(\ell_1, \dots, -\ell_2)$$

- Each vertex is an on-shell tree amplitude with light-like internal momenta ℓ_i
- Each propagator is continued off-shell $L_i = \ell_i + z_i \eta$
- Rewrite integrals as phase space plus dispersion integrals

$$\int \frac{dz}{z} \int dL IPS^{(4)}(\ell_1, \ell_2, P) \mathcal{A}_L(\ell_2, \dots, -\ell_1) \mathcal{A}_R(\ell_1, \dots, -\ell_2)$$

 For the all-minus amplitude, three types of contribution - all involving MHV QCD vertices with the tree-level all-minus amplitude

✓ The integrand is written down by inspection e.g.

$$\mathcal{A}_L \mathcal{A}_R = \frac{m_H^4}{[l_1 l_2][l_2 l_1]} \frac{[l_1 l_2]^3}{[l_2 1][n l_1] \prod_{\alpha=1}^{n-1} [\alpha \alpha + 1]} = \mathcal{A}^{(0)}(\phi; 1^-, \dots, n^-) \frac{[l_1 l_2][1n]}{[l_2 1][n l_1]}$$

✓ Spinor algebra to simplify integrand

$$\frac{[l_1 l_2][1n]}{[l_2 1][n l_1]} \to \frac{2P \cdot nP \cdot 1 - P^2 n \cdot 1}{4\ell_1 \cdot 1n \cdot \ell_2} - \frac{P \cdot 1}{2\ell_1 \cdot 1} - \frac{P \cdot n}{2n \cdot \ell_2}$$

Only the contributions corresponding to a cut in a particular channel are produced
 i.e. not the whole box function, but only the part that has a cut in that channel

van Neerven, NPB 268 (1986) 453

✓ Only one of the four hypergeometric functions in F^{2me} is produced. The other hypergeometric functions are obtained summing over the different classes of diagrams - and reconstruct entire box functions

 $A_n^{(1),C}(\phi, 1^-, \dots, n^-)$

Summing over the permutations of the three topologies,

$$\begin{aligned} A_n^{(1),C}(\phi, 1^-, \dots, n^-) &= A_n^{(0)}(\phi, 1^-, \dots, n^-) \\ &\left[\sum_{i=1}^n \left(F_3^{1m}(s_{i,n+i-2}) - F_3^{1m}(s_{i,n+i-1}) \right) \right. \\ &\left. - \frac{1}{2} \sum_{i=1}^n \sum_{j=i+2}^{n+i-2} F_4^{2me}(s_{i,j}, s_{i+1,j-1}; s_{i,j+1}, s_{i+1,j}) \right. \\ &\left. - \frac{1}{2} \sum_{i=1}^n F_4^{1m}(s_{i,i+2}; s_{i,i+1}, s_{i+1,i+2}) \right] \end{aligned}$$

- ✓ F_3^{1m} , F_4^{1m} , F_4^{2me} scaled loop integrals
- Satisfies known infrared pole structure
- ✓ Satisfies cut-constructible part of double collinear limit

 $A_n^{(1),C}(\phi, 1^-, 2^-, 3^+ \dots, n^+)$

$$\begin{split} A_n^{(1),C}(\phi,1^-,2^-,3^+\dots,n^+) &= A_n^{(0)}(\phi,1^-,2^-,3^+,\dots,n^+) \\ \times \left[\sum_{i=1}^n \left(\mathbf{F}_3^{1\mathbf{m}}(s_{i,n+i-2}) - \mathbf{F}_3^{1\mathbf{m}}(s_{i,n+i-1}) \right) \\ &- \frac{1}{2} \sum_{i=1}^n \sum_{j=i+2}^{n+i-2} \mathbf{F}_4^{2\mathbf{m}e}(s_{i,j},s_{i+1,j-1};s_{i,j+1},s_{i+1,j}) - \frac{1}{2} \sum_{i=1}^n \mathbf{F}_4^{1\mathbf{m}}(s_i,i+2;s_{i,i+1},s_{i+1,i+2}) \\ &+ \sum_{i=4}^n \left(\frac{2}{3} \left(1 - \frac{N_F}{N} \right) \left[\frac{\operatorname{tr}_{-}(1P_{i,n}(i-1)2)^3}{s_{12}^3} L_3(s_{i-1,1},s_{i,1}) + \frac{\operatorname{tr}_{-}(2P_{3,i-1}i1)^3}{s_{12}^3} L_3(s_{2,i},s_{2,i-1}) \right] \\ &- \left(1 - \frac{N_F}{N} \right) \left[\frac{\operatorname{tr}_{-}(1P_{i,n}(i-1)2)^2}{s_{12}^2} L_2(s_{i-1,1},s_{i,1}) + \frac{\operatorname{tr}_{-}(2P_{3,i-1}i1)^2}{s_{12}^2} L_2(s_{2,i},s_{2,i-1}) \right] \\ &+ 4 \left(1 - \frac{N_F}{4N} \right) \left[\frac{\operatorname{tr}_{-}(1P_{i,n}(i-1)2)}{s_{12}} L_1(s_{i-1,1},s_{i,1}) + \frac{\operatorname{tr}_{-}(2P_{3,i-1}i1)}{s_{12}} L_1(s_{2,i},s_{2,i-1}) \right] \right) \end{split}$$

with

$$L_k(s,t) = \frac{\log(s/t)}{(s-t)^k} \qquad \qquad \text{Twistor inspired Higgs phenomenology-p.19}$$

Unphysical poles

Cut terms have spurious poles (coming from tensor triangle integrals)

 $\frac{\log(s_1/s_2)}{(s_1 - s_2)^2}$

⇒ rational terms must have (predictable) spurious poles that that do not obey factorisation properties

$$\frac{(s_1+s_2)}{2s_1s_2(s_1-s_2)}$$

✓ Define completed cut term

$$\frac{\log(s_1/s_2)}{(s_1-s_2)^2} - \frac{(s_1+s_2)}{2s_1s_2(s_1-s_2)}$$

They must be there - and are generated by tensor triangle reduction

Twistor inspired Higgs phenomenology - p.2

On-shell recursion

- Once cut-completion terms have been defined (and their residue on physical poles removed) can use factorisation properties to establish a recursion relation.
- ✓ on-shell recursion for ϕ -MHV amplitudes

X Still not fully understood for all helicity configurations

One-loop Higgs amplitudes

$$A_n^{(1),C}(H;\cdots) = A_n^{(1),C}(\phi;\cdots) + A_n^{(1),C}(\phi^{\dagger};\cdots)$$

$$\begin{split} &A_4^{(1),R}(H;1^-,2^-,3^-,4^-) \\ &= \frac{N_p}{96\pi^2} \left[-\frac{s_{13}\langle 4|1+3|2|^2}{s_{123}\left[1\,2\right]^2\left[2\,3\right]^2} + \frac{\langle 3\,4\rangle^2}{\left[1\,2\right]^2} + 2\frac{\langle 3\,4\rangle\langle 4\,1\rangle}{\left[1\,2\right]\left[2\,3\right]} + \frac{s_{12}s_{34} + s_{123}s_{234} - s_{12}^2}{2\left[1\,2\right]\left[2\,3\right]\left[3\,4\right]\left[4\,1\right]} \right] \\ &+ 3 \text{ cyclic perms} \end{split}$$

$$\mathcal{A}^{(1),R}(H;1^{-},2^{-},3^{+},4^{+}) = \frac{N_{p}}{96\pi^{2}} \left[\frac{(s_{12}+s_{23})\langle 2|1+3|4]^{2}}{s_{123}\langle 23\rangle^{2}[12]^{2}} - \frac{s_{234}\langle 12\rangle[41]}{\langle 23\rangle\langle 34\rangle[12]^{2}} - \frac{\langle 2|1+3|4][34]}{\langle 23\rangle[12]^{2}} + \frac{1}{4} \left(\frac{\langle 12\rangle}{\langle 34\rangle} - \frac{[34]}{[12]} \right)^{2} \right]$$

+3 perms

 \rightarrow implemented in MCFM

Twistor inspired Higgs phenomenology – p.2

Summary

By rearranging the effective Lagrangian, Higgs plus multi-parton amplitudes amenable to new on-shell methods

- Tree-level
 - ✓ Known results for up to five partons checked
 - New analytic results for any number of partons in particular helicity configurations
- Cut constructible parts of one-loop amplitudes can be rather simple
 - ✓ New analytic results for one-loop ϕ amplitude with any number of negative helicity gluons
 - ✓ New analytic results for one-loop ϕ -MHV amplitude with any number of gluons
- Rational parts of one-loop amplitudes slightly more work
 - ✓ New analytic results for one-loop φ amplitude with any number of positive gluons and up to two (adjacent) negative gluons

Berger, Del Duca, Dixon; Badger, EWNG, Risager

✓ New analytic results for one-loop $H \rightarrow ---$ and $H \xrightarrow[]{Twistor inspired Higgs phenomenology - p.22}$

Summary - II

- New methods already competitive with traditional methods for loop amplitudes with massless particles - gluons, quarks
- ✓ Six gluon one-loop amplitudes are new results (confirmed numerically)
- ✓ Will definitely see all six parton one-loop amplitudes in next few months
- Not necessarily the most interesting phenomenologically
- ? Will new methods be useful for amplitudes with heavy particles top quarks, susy particles, Higgs bosons, vector bosons
- ✓ In principle heavy particles not a problem but certainly a complication.
- ✓ yes for one Higgs plus multiparton as discussed here
- ✓ yes for one vector boson plus multiparton e.g. V + multijet
- ✓ probable for two vector boson plus multiparton e.g. VV + multijet
- ? much more difficult for $pp \rightarrow t\bar{t}b\bar{b}$
 - ✓ ✓ Expect much more progress in 2007