

Deuteron production in the NA56/SPY experiment at CERN SPS

NA56 Collaboration

M. Bonesini Sezione INFN Milano Bicocca

Dipartimento di Fisica G. Occhialini Universita' di Milano-Bicocca

M. Bonesini - HEP07 Manchester UK

The Na56/SPY experiment

Critical points for such an experimen

- beamline simulation (spectrometer acceptance) (5 10 % precision)
- **Particle misidentification** (< 1%)
- Subtraction of long lifetime particles decaying outside the target ($K_s^0 \rightarrow \pi\pi, ...$) (< 2%)
- Beam momentum determination and K lifetime
- ->uncertainty on K decay correction (1 %)
 - **Protons on target** (2 %)

- Measure π, k, p cross sections by 450 GeV/c p on Be (5-10% precision) ->knowledge of v spectra
- Measure k/π ratio (3% precision) -> knowledge v_e/v_µ ratio
 - Equipped H6 beamline from NA52 experiment in North Area
 - * Primary p flux measured by SEM
 - Different Be targets (shapes, L)
 - PID by TOF counters (low momenta) and Cerenkov (high momenta)

H6 beamline optics

M. Bonesini - HEP07 Manchester UK

3

minority components -> Problem in conventional Main physics issue of NA56/SPY: modelling needs better knowledge of secondaries production in v_u beams: a lot of of conventional v_{μ} beams (from π decay) target 80 100 120 140 E, (GeV) prompt ν_{τ} \leq 10 104 Ved x foq -φ^{*} (10] 0 0 WANF

M. Bonesini - HEP07 Manchester UK

Horns

4

deuteron analysis

- From data first extract (d/p) ratio (PID)
- beamline acceptance, strange particle decays Compute p cross section Ed³ o/dp³ (H6 outside target, extrapolation to zero target length...)
- $(Ed^3\sigma/dp^3)_{d} = (d/p) * (Ed^3\sigma/dp^3)_{p}$ as a Determine d invariant cross section as function of p, p_T

d/p ratio: particle identification at low energy

- mass reconstruction with TOFs at 15 GeV/c (in colour Cerenkov separation)
- *d* are distinguished from *p* by TOF rec. up to 40 GeV/c

d/p cross section ratio

M. Bonesini - HEP07 Manchester UK

 ∞

NA56/SPY results on proton invariant

cross sections

- Model independent
 extrapolation to zero target thickness with data (L=100,200,300 mm targets)
 - * Total error 10%
 (syst+stat)

M. Bonesini - HEP07 Manchester UK

- data were taken with different target lengths: 100, 200, 300 mm and shapes (slat/rods)
- so it was possible to extrapolate to L=0 mm in a model independent way

deuteron invariant cross section

Angular scan

$(Ed^{3}\sigma/dp^{3})_{d} = (d/p)^{*}$ $(Ed^{3}\sigma/dp^{3})_{p}$

- from measured d/p ratio
 published NA56/SPY p
 x-sections
- total errors ~ 12-15% (stat+syst)

M. Bonesini - HEP07 Manchester UK

13

Conclusions

- section measured in NA56/SPY (exp d/p cross section ratio and d inv xmainly devoted to understanding of conventional neutrino beams)
- mechanism in p+Be interactions at low p_T at variance with Pb+Pb collisions, d are Coalescing is not the dominant mainly directly produced