Results from the PHOBOS experiment at RHIC

Adam Trzupek

The Henryk Niewodniczański Institute of Nuclear Physics

Polish Academy of Sciences

Kraków, Poland

The 2007 Europhysics Conference on High Energy Physics Manchester, England, 19-25 July 2007

PHOBOS Collaboration

Burak Alver, Birger Back, Mark Baker, Maarten Ballintijn, Donald Barton, Russell Betts, Richard Bindel, Wit Busza (Spokesperson), Vasundhara Chetluru, Edmundo García, Tomasz Gburek, Joshua Hamblen, Conor Henderson, David Hofman, Richard Hollis, Roman Hołyński, Burt Holzman, Aneta Iordanova, Chia Ming Kuo, Wei Li, Willis Lin, Constantin Loizides, Steven Manly, Alice Mignerey, Gerrit van Nieuwenhuizen, Rachid Nouicer, Andrzej Olszewski, Robert Pak, Corey Reed, Christof Roland, Gunther Roland, Joe Sagerer, Peter Steinberg, George Stephans, Andrei Sukhanov, Marguerite Belt Tonjes, Adam Trzupek, Sergei Vaurynovich, Robin Verdier, Gábor Veres, Peter Walters, Edward Wenger, Frank Wolfs, Barbara Wosiek, Krzysztof Woźniak, Bolek Wysłouch

ARGONNE NATIONAL LABORATORY INSTITUTE OF NUCLEAR PHYSICS PAN NATIONAL CENTRAL UNIVERSITY UNIVERSITY OF MARYLAND BROOKHAVEN NATIONAL LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY UNIVERSITY OF ILLINOIS AT CHICAGO UNIVERSITY OF ROCHESTER

Outline

PHOBOS detector

- Data: p+p, d+Au, Cu+Cu, Au+Au at $\sqrt{s_{NN}} = 20 - 200 \text{ GeV}$

Charged particle multiplicities

- Factorization of energy and centrality dependence in Au+Au and Cu+Cu collisions
- Azimuthal anisotropy of produced particles in Au+Au and Cu+Cu collisions
 - Participant eccentricity scaling
- p_T Spectra of identified particles
 - Very low p_T data a handle on radial flow
- Summary

HEP'07 Manchester

HEP'07 Manchester

Charged hadron dN_{ch}/dη **distribution (PHOBOS)**

PRL 91 (2003) 052303, PRC 74 (2006) 021901, PRC 72 (2005) 031901

HEP'07 Manchester

Au+Au and Cu+Cu at the same N_{part} ($\sqrt{s_{NN}}$ = 200 GeV)

N_{nart} - number of participating nucleons

For the same N_{part} (system size) dN_{ch}/dη shape is very similar for Au+Au and Cu+Cu collisions

HEP'07 Manchester

Charged particle yields in Au+Au and Cu+Cu at midrapidity

Particle density per participant pair

PRC 74 (2006) 021901, NPA 774 (2006) 113

Increase in particle production per participant with N_{part} Ratio of charged hadron yield at 200 GeV to yields at lower energies (200/X)

- No centrality dependence for $N_{part} > 40$
- Energy and centrality dependences of charged hadron yields factorize

HEP'07 Manchester

Charged Particle p_T Spectra

Ratio of charged hadron yields at 200 and 62.4 GeV

No centrality dependence for $p_T = 0.2 - 4$ GeV/c

Factorization of energy and centrality dependence is valid at different transverse momenta.

Extended longitudinal scaling

Energy independence of charged particle yields from moderate to high rapidities

Azimutal anisotropy of produced particles

- Pressure gradients lead to azimuthal anisotropy
- Elliptic flow is the second harmonic in the Fourier expansion of azimuthal particle distribution

 $dN/d(\phi - \Psi_0) = N_0 (1 + 2v_1 \cos(\phi - \Psi_0) + 2v_2 \cos(2(\phi - \Psi_0)) + \dots)$

v_2 in Au+Au and Cu+Cu (η dependence)

0-40%, charged particles

broad η range
several energies

PRL 98 (2007) 242302, PRC 72 (2005) 051901, PRL 94 (2005) 122303

• for Cu+Cu v_2 is large and grows with energy • shape (in η) for Au+Au and Cu+Cu similar

v₂ in Au+Au and Cu+Cu (centrality dependence)

- decreases with centrality
- for central collisions v₂ is non-zero (larger in Cu+Cu)

Standard and Participant eccentricity

Initial overlap geometry

Visible in final measured particle azimuthal angular distributions

Participant eccentricity:

for the same b, interaction points vary from event-to-event

$$<\varepsilon_{part}>=\frac{\sqrt{(\sigma_y^2-\sigma_x^2)^2+4\sigma_{xy}^2}}{\sigma_y^2+\sigma_x^2}$$

minor axis not along b, $(b\neq x)$

HEP'07 Manchester

Does using $< \varepsilon_{part} >$ make a difference? **YES**

PRL 98 (2007) 242302

< \$\mathcal{E}_{part}\$ > increases for smaller systems
 For central Cu+Cu:

HEP'07 Manchester

Eccentricity scaled v₂ in Au+Au and Cu+Cu

 $< \varepsilon_{part} >$ unifies average v₂ in Au+Au and Cu+Cu

Eccentricity scaled v₂ in Au+Au and Cu+Cu

 $< \varepsilon_{part} >$ unifies average v₂ in Au+Au and Cu+Cu

 p_T dependence of $v_2 / < \varepsilon_{part} >$

Au+Au and Cu+Cu at matched N_{part}

 $< \mathcal{E}_{part} >$ unifies v₂(p_T) in Au+Au and Cu+Cu

HEP'07 Manchester

Pseudorapidity dependence of $v_2 I < \varepsilon_{part} >$

Au+Au and Cu+Cu at matched N_{part}

 $< \mathcal{E}_{part} >$ unifies v₂(η) in Au+Au and Cu+Cu

The collision geometry controls the dynamical evolution of heavy ion collisions

More information on the dynamical evolution can be obtained from identified particle p_T spectra

HEP'07 Manchester

PHOBOS Particle Identification

PRC 70 (2004) 051901, PRC 75 (2007) 024910

Particle ID from low to high p_T

HEP'07 Manchester

Identified particle p_T -spectra, Au+Au at 62.4 GeV

Time-of-Flight measurement extends p_T reach to 3 GeV/c for protons

- Smooth evolution with centrality
- Proton spectra are harder than the meson spectra

HEP'07 Manchester

Particle production at very low p_T

• Unique low-p_T coverage of PHOBOS

PRC 75 (2007) 024910

- No enhanced production at very low p_T
- p_T spectra consistent with transverse expansion of the system

m_T -scaling in d+Au vs. central Au+Au

 m_T - Scaling = the same slope of m_T –spectra

PRC 70 (2004) 051901, PRC 75 (2007) 024910

Lack of m_T scaling in central heavy ion collisions

Summary

- $dN_{ch}/d\eta$ for Au+Au and Cu+Cu
 - Similar at the same N_{part}
 - Factorization of centrality and energy dependence
 - Extended longitudinal scaling
- Elliptic Flow
 - v_2 for A+A is large and continues to grow with energy
 - Participant eccentricity is relevant for the azimuthal anisotropy
 - Scaling of v_2 / ϵ_{part} for Cu+Cu and Au+Au
- p_T -Spectra of Identified Particles
 - No enhanced production at very low p_T in central Au+Au collisions
 - Lack of m_T scaling in central Au+Au collision consistent with transverse expansion of the system

The collision geometry controls the dynamical evolution of heavy ion collisions