Top Properties at CDF

Shulamit Moed, Harvard University for the CDF collaboration EPS 2007, 19-25/07/07, Manchester, U.K

Outline:

- Introduction
- Top cross section
- Top production mechanism
- W helicity
- O Summary

Shulamit Moed

Why Is the Top Quark Interesting?

• Only fermion with mass at EW scale (world combination summer '06: $171.4\pm1.2\pm1.8$ GeV), ~40 times heavier than the bottom quark.

• Very wide (1.5 GeV/c²) \rightarrow opportunity to probe bare quark properties .

• Top special relation to the Higgs boson.

• Is it the SM top? Is it only the SM top? Is the top gateway to new physics?

CDF

- Inner silicon tracker essential for vertexing and b-tagging
- Central outer tracker
- **o** Solenoid
- EM and HAD calorimeters
- Muon system

• All current top quark property measurements use ttbar sample.

• Results shown in this talk use ~1fb⁻¹ of data

Top Pair Production and Cross Section

- Can we confirm the SM top pair cross-section?
- Cross section requires understanding of all background processes in sample.
- These samples and their composition are the basis for every top property measurement.

19 July 2007

Cross Section Results in the Lepton+Jets Channel

• Signal Region:

- Isolated lepton (e or μ).
- Missing transverse energy (neutrino)
- 3 or more jets:
 - At least one b tagged

• Backgrounds:

- W + light flavor (~40% of total bkg)
- W+ heavy flavor (~35% of total bkg)
- non-W (~15% of total bkg)

- EW (diboson, single top, Z \rightarrow tau tau, ~10% of total bkg)

- → Assume tt production cross section, σ_{tt} .
 - Estimate backgrounds using σ_{tt} .
- Measure a new σ_{tt}, iterate between pretagged and tagged samples until convergence.

• Double-tag result:

$$8.8 \pm 0.8$$
 (stat) ± 1.3 (syst) pl

 $8.2 \pm 0.5 (stat) \pm 0.9 (syst) pb$

• Good compromise between backgrounds and acceptance.

Top Pair Production Mechanism: $\sigma(gg \rightarrow t\bar{t}) / \sigma(p\bar{p} \rightarrow t\bar{t})$

•Tests pQCD

OAt 1.96 TeV:

Large theoretical uncertainties,

up to a factor of 2

Method I :

Look at correlations between the gluon content in the event and the number of low P_T tracks.

- gg initial state tends to have greater underlying event activity.

$$\frac{\sigma(gg \to t\bar{t})}{\sigma(p\bar{p} \to t\bar{t})} = 0.01 \pm 0.16(stat) \pm 0.07(syst)$$

~85% top pairs from gg

~15% top pairs from gg

• Calibrate <N_{trk}> vs. <N_g> correlation using W+jets and dijet data.

• Fit lepton+jets data to gluon-rich and no-gluon <N_{trk}> templates.

Production Mechanism – Method II

Use ttbar production and decay kinematics: - pairs originate from gg tend to be produced in the forward region with unlike spin.

- pairs originate from qq tend to be produced centrally with like spin.

• Fully reconstruct the event, using lepton+jets channel.

O Use NN with 8 inputs containing production and spin correlation information.

• Fit the data to templates constructed from NN output.

Decay includes spin correlations

• Define the off-diagonal basis. (hep-ph/960419)

• Many discriminators: e.g.: angle between lepton and off-diagonal axis in top rest frame.

W Boson Helicity

- Use lepton+jets, fully reconstruct the event.
- Calculate $cos(\theta^*)$ for signal and background and construct templates.
- Use templates in likelihood fitter to fit data and extract helicity fractions:
 - fix right-handed fraction to 0, fit for longitudinal fraction.
 - fix longitudinal fraction to SM expectation, fit for right-handed fraction.
 - fit simultaneously longitudinal and right-handed fraction.

W Boson Helicity - Results

 $f_0 = 0.60 \pm 0.12 \pm 0.06$, $f_+ = 0$ fixed $f_+ = -0.06 \pm 0.06 \pm 0.03$, f_0 fixed to SM value @M₊ =175 GeV

Measurement limited by statistics, consistent with SM expectation

→ Set an upper limit on f_+ : $f_+<0.11@95\%$ C.L

Simultaneous fit:

 $f_0 = 0.74 \pm 0.25(stat) \pm 0.06(syst)$ $f_+ = -0.06 \pm 0.10(stat) \pm 0.03(syst)$

Similar analysis constructs templates taking efficiencies and reconstruction effects into account:

$$f_0 = 0.59 \pm 0.12(stat) \pm 0.06(syst)$$

 $f_+ < 0.10 @ 95\% C.L$

Summary

- In 1fb⁻¹ of data few hundreds reconstructed ttbar events in the current datasets.
- Lots of exciting top physics at CDF: spin correlation, anomalous coupling, production asymmetry, top charge, resonant production searches, FCNC searches...
- Besides cross sections, all top property measurements are still statistically limited.
- However, top properties becoming precision measurements.
- **O** Results with 2fb⁻¹ coming soon.
- All measurements so far consistent with SM predictions.

Backup Slides

Cross Section Summary

Helicity of W Bosons and the tWb Vertex

