@)
OO A FAPESP ufkgem

Universidade Federal do ABC

Introduction to GEANT4

Laura Pauluccl and Franciole Marinho

material adapted from M. Asai / P. Gumplinger /
G. Santin / J. McCormick

Third UK-Latin America Workshop on Advanced Light Collection Systems

What is GEANT4?

. a general purpose Monte Carlo simulation tool for
elementary particles passing through and interacting with
matter

. wide variety of uses: high energy and nuclear physics,
space engineering, medical applications, material science,
radiation protection...

Provides:
- Geometry and navigation
- Physics processes

- Scoring

- GUI and Visualization drivers

- Extensive user guide documents and examples

GEANT4 Basics

. Torun, you have to build an application:

- Define your geometrical setup (Material, volume...)

- Define physics to get involved (Particles, physics
processes/models, Production thresholds)

- Define how an event starts (Primary track generation)

- Extract information useful to you

. You may also want to

- Visualize geometry, trajectories and physics output
- Utilize (Graphical) User Interface

- Define your own Ul commands

Geometry

. Rich collection of shapes

- CSG (Constructed Solid Geometry), Boolean operation,
Tessellated solid, etc.

- The user can easily extend

. Describing a setup as hierarchy or ‘flat’ structure
- Describing setups up to billions of volumes

- Tools for creating & checking
complex structures

- Interface to CAD

. Geometry models can be ‘dynamic’

- Changing the setup at run-time,
e.g. ‘moving objects”

Physical processes

. Electromagnetic

. Hadronic and nuclear

. Photon/lepton---hadron
. Optical photon

. Decay

. Shower parameterization
. Event biasing techniques
. And you can plug-in more

. Sets of alternative physics models — user can freely
choose appropriate models according to the type of his/her
application (e.g. accuracy vs. speed)

Terminology

e Run, event, track, step, step point
e Track < trajectory, step < trajectory point

® Process

— Atrest, along step, post step
e (ut = production threshold

e Sensitive detector, score, hit, hits collection

What is an event?

Basic unit of simulation in Geant4d - G4Event class
- List of primary vertices and particles (as input)

- Hits and Trajectory collections (as output)

. At beginning of processing, primary tracks are generated

. Track is popped up from the stack one by one and “tracked”.

which are pushed into a stack

Resulting secondary tracks are pushed into the stack
- This “tracking” lasts as long as the stack has a track

- When the stack is empty, processing of one event Is over
G4EventManager class manages processing an event

G4UserEventAction is the optional user hook

What is a step?

Has two points and information of a particle (energy loss
on the step, time-of-flight spent by the step, etc.) —
G4Step class

Each point knows the volume (and material)

- In case a step is limited by a volume boundary, the end
point physically stands on the boundary — allows simulation
of boundary processes (transition radiation or refraction...)

. GA4SteppingManager class manages processing a step

. G4UserSteppingAction is the optional user hook

Boundary

Step

. Post-step point
Pre-step point

What is a track?

Snapshot of a particle — G4 Track class

- It has physical quantities of current instance only. It does not
record previous quantities

- Step is a “delta” information to a track. Track is not a
collection of steps, but is being updated by steps

. Track object is deleted when

- it goes out of the world volume,
- it disappears (by e.g. decay, inelastic scattering),

- it goes down to zero kinetic energy and no “AtRest”
additional process is required, or

- the user decides to kill it artificially

What is a track?

. No track object persists at the end of event

- For the record of tracks, use trajectory class objects

. G4TrackingManager manages processing a track

. G4UserTrackingAction is the optional user hook

What about trajectory and trajectory

DoINt”?
. No track object persists at the end of event

. G4Trajectory is the class which copies some of G4 Track
information

. G4TrajectoryPoint is the class which copies some of
G4Step information

. G4Trajectory has a vector of G4 TrajectoryPoint

. At the end of event processing, G4Event has a collection
of G4 Trajectory objects

. Given G4Trajectory and G4 TrajectoryPoint objects persist
till the end of an event, you should be careful not to store
too many trajectories (e.g. high energy EM shower tracks)

What is a run?

. Collection of events which share the same detector and

physics conditions
- Consists of one event loop
- Starts with “Beam On”

. Within a run, the user cannot change

- detector setup
- settings of physics processes

. G4RunManager class manages processing a run, a run is

represented by G4Run class or a user-defined class
derived from G4Run

. G4UserRunAction is the optional user hook

Processes

. Each particle has its own list of applicable processes

. At each step, all processes listed are invoked to get

proposed physical interaction lengths

. The process which requires the shortest interaction length

limits the step

. Each process has one or combination of the following

natures
- AtRest ¢ e.g. muon decay at rest

- AlongStep (a.k.a. continuous process) ¢ e.g. Cerenkov
process

- PostStep (a.k.a. discrete process) ¢ e.g. decay on the fly

Cuts and storing info

. A Cutin Geant4 is a production threshold

. Not tracking cut, which does not exist in Geant4 as default
- All tracks are traced down to zero kinetic energy

e Geant4 does proper physics simulation “silently” — You
have to do something to extract useful information

- Built-in scoring commands

. Most commonly-used physics quantities are
available

Storing info

. Use scorers in the tracking volume
. Create scores for each event
. Create own Run class to accumulate scores

- Use user hooks :

. G4UserEventAction, G4UserRunAction to get event
/run summary

. G4UserTrackingAction, G4UserSteppingAction,etc.
— full access to almost all information, but
do-it-yourself

Building an application

. main()

. Initialization classes
. G4V UserDetectorConstruction
. G4VUserPhysicsList

. G4VUserActionlnitialization
_ _ MANDATORY
. Action classes: Invoked during an event loop CLASSES!

. G4VUserPrimaryGeneratorAction
. G4UserRunAction

. G4UserEventAction

. G4UserStackingAction

. G4UserTrackingAction

. G4UserSteppingAction

How Geant4 runs

e Initialization
— Construction of material and geometry

— Construction of particles, physics processes and
calculation of cross-section tables

e “Beam-On” = “Run”
— Close geometry --> Optimize geometry
— Event Loop
---> More than one runs with different
geometrical configurations

Environment variables

. You need to set following environment variables to
compile, link and run Geant4-based simulation.

- Mandatory variables
G4SYSTEM - OS (e.g. Linux-g++)
G4INSTALL - base directory of Geant4
G4WORKDIR - your temporary work space
CLHEP_BASE_DIR - base directory of CLHEP

— Variable for physics processes
G4LEVELGAMMADATA - directory of PhotonEvaporation data

- Additional variables for GUI/Vis/Analysis

Main program

e Must
— Construct G4RunManager (or derived class)
— Set user mandatory classes to RunManager

® (4VUserDetectorConstruction
e (G4VUserPhysicsList
® (G4VUserPrimaryGeneratorAction

e (Can
— define VisManager, (G)UI session, optional user
action classes, and/or your persistency manager

Select (G)UI

In main(): construct a G4UIsession concrete class
provided by Geant4 and invoke its sessionStart()
method (according to your computer
environments)

Geant4 provides

— G4Ulterminal -- C-shell like character terminal

— G4GAG -- Tcl/Tk or Java PVM based GUI

— G4Wo -- Opacs

— G4UIBatch -- Batch job with macro file

Visualization

e Derive your own concrete class from
G4VVisManager according to your computer
environments.

e Geant4 provides interfaces to graphics drivers
— DAWN
— WIRED
— RayTracer -- Ray tracing by Geant4 tracking
— OPACS
— OpenGL
— Openlnventor
— VRML

Describing the detector

e Derive your own concrete class from
G4VUserDetectorConstruction abstract base
class

e In the virtual method Construct()

— Construct all necessary materials
— Construct volumes of your detector geometry

— Construct your sensitive detector classes and
set them to the detector volumes

e Visualization attributes of your detector
elements are optional

Selecting physics processes

e No default particles or processes

— Even for the particle transportation, you have to
define it explicitly
e Derive your own concrete class from
G4VUserPhysicsList abstract base class
— Define all necessary particles

— Define all necessary processes and assign them to
proper particles

— Define cut-off ranges

Generating primary event

e Derive your concrete class from
G4VUserPrimaryGeneratorAction abstract base

class

e Pass a G4Event object to one or more primary
generator concrete class objects which generate
primary vertices and primary particles

e Geant4 provides three generators:

- G4ParticleGun

- G4HEPEvtInterface — Interface to /hepevt/
common block via ascii file

- Interface to HepMC

Let's take a look at an example

You may need to setup environment variables before hand

o source /opt/geant4/share/Geant4-10.4.2/geantdmake/geant4dmake.sh
Get the “g4workshop_example/” directory in your account

Create a working directory “g4workshop build” and do

o cmake -DGeant4_DIR=$G4COMP ../gdworkshop example

o make -

o and cross fingers

Before running identify key elements in the code

o For instance, look in gdworkshop_example/src/

o DetectorConstruction.cc, PhysicsList.cc, PrimaryGeneratorAction.cc

Geometry description

(%include "DetectorConstruction.hh"
#include "G4PhysicalConstants.hh"
#include "G4SystemOfUnits.hh"
\#include "G4NistManager.hh" y

/;gid DetectorConstruction: :DefineMaterials ()

{

G4NistManager * man = G4NistManager::Instance() ;

fDefaultMaterial = env mat;
G4cout << G4endl << * (G4Material::GetMaterialTable())

_

~

G4Material* env mat = man->FindOrBuildMaterial ("G4 1Ar");

<< G4dendl;

J

Geometry description

G4VPhysicalVolume* DetectorConstruction::ConstructLine ()

{
// WORLD

fiWorldSizeXY = 10*m; fWorldSizeZz = 10*m;

fSolidWorld = new G4Box ("World", fWorldSizeXY/2, fWorldSizeXY/2,
fWorldSizeZ/2) ;

flogicWorld = new G4LogicalVolume (fSolidWorld, fDefaultMaterial,
"World") ;

fPhysiWorld = new G4PVPlacement (0,G4ThreeVector (), "World",
fLogicWorld,NULL, false, 0);

return fPhysiWorld;

Physics processes

volid PhysicsList::ConstructEM/()
{

auto theParticlelterator=GetParticlelterator();
theParticlelIterator->reset ()

while((*theParticlelterator) ()) {
G4ParticleDefinition* particle = theParticlelterator->value();
G4ProcessManager* pmanager = particle->GetProcessManager (),

G4String particleName = particle->GetParticleName () ;

if (particleName == "gamma") {
// Construct processes for gamma
pmanager->AddDiscreteProcess (new G4GammaConversion());
pmanager—->AddDiscreteProcess (new G4ComptonScattering())
pmanager—->AddDiscreteProcess (new G4PhotoElectricEffect());

} else 1f (particleName == "e-") {
// Construct processes for electron
pmanager->AddProcess (new G4eMultipleScattering(),-1, 1, 1);
pmanager->AddProcess (new G4elonisation(), -1, 2, 2);
pmanager—->AddProcess (new G4eBremsstrahlung(), -1, 3, 3);

Primary generator

vold PrimaryGeneratorAction: :GeneratePrimaries (G4Event* anEvent)

{

G4int 1=0; G4double x0,vy0,z0,theta,phi; G4double test;
x0=y0=z0=0.0;

phi = CLHEP::twopli*CLHEP: :RandFlat::shoot(0.0,1.0)*rad;
while (1==0) {
theta = CLHEP::RandFlat::shoot(0.0,CLHEP: :p1i)*rad;
test = CLHEP::RandFlat::shoot(0.0,1.0);
if(sin(theta)>test)i++;

//Particle direction
G4double kx, ky, kz;
kx=cos (phi) *sin (theta);
ky=sin (phi) *sin (theta);
kz=cos (theta) ;

G4ThreeVector dir vec (kx,ky,kz);

Primary generator

//Polarization
G4ThreeVector polar = Polarisation(dir vec);

fParticleGun—->SetParticleEnergy (4*GeV) ;
fParticleGun—->SetParticleMomentumDirection (dir vec);
fParticleGun->SetParticlePosition (G4ThreeVector (x0,vy0,z0));
//fParticleGun->SetParticlePolarization (polar);

G4ParticleDefinition* particle=
G4ParticleTable: :GetParticleTable () ->FindParticle ("mu-") ;

4

//G4ParticleTable: :GetParticleTable () ->FindParticle ("opticalphot
on");

fParticleGun->SetParticleDefinition (particle);
fParticleGun->GeneratePrimaryVertex (ankEvent) ;

Running the application

e Now open g4workshop.cc

int main(int argc,char** argv) {
// Choose the Random engine and random seed with system time
// Construct the default run manager

// Set mandatory user initialization classes
DetectorConstruction* detector = new DetectorConstruction;
runManager->SetUserInitialization (detector);

PhysicsList* physics = new PhysicsList();
runManager->SetUserInitialization (physics);

// User action initialization

runManager->SetUserInitialization(new ActionlInitialization (detector));

// Initialize G4 kernel
runManager->Initialize () ;

// Set visual and interface managers...

Running the application

e Go back to terminal on “g4workshop build/” and do “./g4workshop”

e You should get on terminal description of:
o Materials composition and characteristics
o Physics processes per particle type
Optical, electromagnetic and hadronic
o and list of interactions (ocurred only)

