
Introduction to GEANT4

Third UK-Latin America Workshop on Advanced Light Collection Systems

Laura Paulucci and Franciole Marinho

material adapted from M. Asai / P. Gumplinger /
G. Santin / J. McCormick

What is GEANT4?

● a general purpose Monte Carlo simulation tool for
elementary particles passing through and interacting with
matter

● wide variety of uses: high energy and nuclear physics,
space engineering, medical applications, material science,
radiation protection…

● Provides:
− Geometry and navigation

− Physics processes

− Scoring

− GUI and Visualization drivers

− Extensive user guide documents and examples

GEANT4 Basics

● To run, you have to build an application:
− Define your geometrical setup (Material, volume…)
− Define physics to get involved (Particles, physics

processes/models, Production thresholds)
− Define how an event starts (Primary track generation)
− Extract information useful to you

● You may also want to
− Visualize geometry, trajectories and physics output
− Utilize (Graphical) User Interface
− Define your own UI commands
− ...

Geometry

● Rich collection of shapes
− CSG (Constructed Solid Geometry), Boolean operation,

Tessellated solid, etc.
− The user can easily extend

● Describing a setup as hierarchy or ‘flat’ structure
− Describing setups up to billions of volumes

− Tools for creating & checking
complex structures

− Interface to CAD

● Geometry models can be ‘dynamic’
− Changing the setup at run-time,

e.g. “moving objects”

Physical processes

● Electromagnetic

● Hadronic and nuclear

● Photon/lepton--‐hadron

● Optical photon

● Decay

● Shower parameterization

● Event biasing techniques

● And you can plug-in more

● Sets of alternative physics models → user can freely
choose appropriate models according to the type of his/her
application (e.g. accuracy vs. speed)

Terminology

● Run, event, track, step, step point

● Track ↔ trajectory, step ↔ trajectory point

● Process

− At rest, along step, post step

● Cut = production threshold

● Sensitive detector, score, hit, hits collection

What is an event?

● Basic unit of simulation in Geant4 → G4Event class
− List of primary vertices and particles (as input)

− Hits and Trajectory collections (as output)

● At beginning of processing, primary tracks are generated
which are pushed into a stack

● Track is popped up from the stack one by one and “tracked”.
Resulting secondary tracks are pushed into the stack
− This “tracking” lasts as long as the stack has a track

− When the stack is empty, processing of one event is over

● G4EventManager class manages processing an event

● G4UserEventAction is the optional user hook

What is a step?

● Has two points and information of a particle (energy loss
on the step, time-of-flight spent by the step, etc.) →
G4Step class

● Each point knows the volume (and material)
− In case a step is limited by a volume boundary, the end

point physically stands on the boundary → allows simulation
of boundary processes (transition radiation or refraction...)

● G4SteppingManager class manages processing a step

● G4UserSteppingAction is the optional user hook

What is a track?

● Snapshot of a particle → G4Track class
− It has physical quantities of current instance only. It does not

record previous quantities
− Step is a “delta” information to a track. Track is not a

collection of steps, but is being updated by steps

● Track object is deleted when
− it goes out of the world volume,

− it disappears (by e.g. decay, inelastic scattering),

− it goes down to zero kinetic energy and no “AtRest”
additional process is required, or

− the user decides to kill it artificially

What is a track?

● No track object persists at the end of event
− For the record of tracks, use trajectory class objects

● G4TrackingManager manages processing a track

● G4UserTrackingAction is the optional user hook

What about trajectory and trajectory
point?

● No track object persists at the end of event

● G4Trajectory is the class which copies some of G4Track
information

● G4TrajectoryPoint is the class which copies some of
G4Step information

● G4Trajectory has a vector of G4TrajectoryPoint

● At the end of event processing, G4Event has a collection
of G4Trajectory objects

● Given G4Trajectory and G4TrajectoryPoint objects persist
till the end of an event, you should be careful not to store
too many trajectories (e.g. high energy EM shower tracks)

What is a run?

● Collection of events which share the same detector and
physics conditions

− Consists of one event loop

− Starts with “Beam On”

● Within a run, the user cannot change
− detector setup
− settings of physics processes

● G4RunManager class manages processing a run, a run is
represented by G4Run class or a user-defined class
derived from G4Run

● G4UserRunAction is the optional user hook

Processes

● Each particle has its own list of applicable processes

● At each step, all processes listed are invoked to get
proposed physical interaction lengths

● The process which requires the shortest interaction length
limits the step

● Each process has one or combination of the following
natures
− AtRest • e.g. muon decay at rest
− AlongStep (a.k.a. continuous process) • e.g. Cerenkov

process
− PostStep (a.k.a. discrete process) • e.g. decay on the fly

Cuts and storing info

● A Cut in Geant4 is a production threshold

● Not tracking cut, which does not exist in Geant4 as default
− All tracks are traced down to zero kinetic energy

● Geant4 does proper physics simulation “silently” → You
have to do something to extract useful information

− Built-in scoring commands
● Most commonly-used physics quantities are

available

Storing info

● Use scorers in the tracking volume
● Create scores for each event
● Create own Run class to accumulate scores

− Use user hooks :
● G4UserEventAction, G4UserRunAction to get event

/run summary
● G4UserTrackingAction, G4UserSteppingAction,etc.

→ full access to almost all information, but
do-it-yourself

Building an application

● main()

● Initialization classes
● G4VUserDetectorConstruction
● G4VUserPhysicsList
● G4VUserActionInitialization

● Action classes: Invoked during an event loop
● G4VUserPrimaryGeneratorAction
● G4UserRunAction
● G4UserEventAction
● G4UserStackingAction
● G4UserTrackingAction
● G4UserSteppingAction

MANDATORY
CLASSES!

● Initialization
− Construction of material and geometry

− Construction of particles, physics processes and
calculation of cross-section tables

● “Beam-On” = “Run”
− Close geometry --> Optimize geometry

− Event Loop

 ---> More than one runs with different

 geometrical configurations

How Geant4 runs

● You need to set following environment variables to
compile, link and run Geant4-based simulation.
− Mandatory variables

● G4SYSTEM – OS (e.g. Linux-g++)

● G4INSTALL – base directory of Geant4

● G4WORKDIR – your temporary work space

● CLHEP_BASE_DIR – base directory of CLHEP

− Variable for physics processes
● G4LEVELGAMMADATA – directory of PhotonEvaporation data

− Additional variables for GUI/Vis/Analysis

Environment variables

● Must
− Construct G4RunManager (or derived class)

− Set user mandatory classes to RunManager
● G4VUserDetectorConstruction
● G4VUserPhysicsList
● G4VUserPrimaryGeneratorAction

● Can
− define VisManager, (G)UI session, optional user

action classes, and/or your persistency manager

Main program

● In main(): construct a G4UIsession concrete class
provided by Geant4 and invoke its sessionStart()
method (according to your computer
environments)

● Geant4 provides
− G4UIterminal -- C-shell like character terminal

− G4GAG -- Tcl/Tk or Java PVM based GUI

− G4Wo -- Opacs

− G4UIBatch -- Batch job with macro file

Select (G)UI

● Derive your own concrete class from
G4VVisManager according to your computer
environments.

● Geant4 provides interfaces to graphics drivers
− DAWN
− WIRED
− RayTracer -- Ray tracing by Geant4 tracking
− OPACS
− OpenGL
− OpenInventor
− VRML

Visualization

● Derive your own concrete class from
G4VUserDetectorConstruction abstract base
class

● In the virtual method Construct()
− Construct all necessary materials
− Construct volumes of your detector geometry
− Construct your sensitive detector classes and

set them to the detector volumes

● Visualization attributes of your detector
elements are optional

Describing the detector

● No default particles or processes
− Even for the particle transportation, you have to

define it explicitly
● Derive your own concrete class from

G4VUserPhysicsList abstract base class
− Define all necessary particles
− Define all necessary processes and assign them to

proper particles
− Define cut-off ranges

Selecting physics processes

● Derive your concrete class from
G4VUserPrimaryGeneratorAction abstract base
class

● Pass a G4Event object to one or more primary
generator concrete class objects which generate
primary vertices and primary particles

● Geant4 provides three generators:
− G4ParticleGun
− G4HEPEvtInterface → Interface to /hepevt/

common block via ascii file
− Interface to HepMC

Generating primary event

Let’s take a look at an example

● You may need to setup environment variables before hand
○ source /opt/geant4/share/Geant4-10.4.2/geant4make/geant4make.sh

● Get the “g4workshop_example/” directory in your account
● Create a working directory “g4workshop_build” and do

○ cmake -DGeant4_DIR=$G4COMP ../g4workshop_example
○ make -j
○ and cross fingers

● Before running identify key elements in the code
○ For instance, look in g4workshop_example/src/
○ DetectorConstruction.cc, PhysicsList.cc, PrimaryGeneratorAction.cc

Geometry description

#include "DetectorConstruction.hh"
#include "G4PhysicalConstants.hh"
#include "G4SystemOfUnits.hh"
#include "G4NistManager.hh"

void DetectorConstruction::DefineMaterials()
{
 G4NistManager * man = G4NistManager::Instance();
 G4Material* env_mat = man->FindOrBuildMaterial("G4_lAr");
 fDefaultMaterial = env_mat;
 G4cout << G4endl << *(G4Material::GetMaterialTable()) << G4endl;
}

Geometry description

G4VPhysicalVolume* DetectorConstruction::ConstructLine()
{
 // WORLD
 fWorldSizeXY = 10*m; fWorldSizeZ = 10*m;

 fSolidWorld = new G4Box("World",fWorldSizeXY/2,fWorldSizeXY/2,
 fWorldSizeZ/2);

 fLogicWorld = new G4LogicalVolume(fSolidWorld,fDefaultMaterial,
 "World");

 fPhysiWorld = new G4PVPlacement(0,G4ThreeVector(),"World",
 fLogicWorld,NULL,false,0);

 return fPhysiWorld;

}

Physics processes
void PhysicsList::ConstructEM()
{
 auto theParticleIterator=GetParticleIterator();
 theParticleIterator->reset();
 while((*theParticleIterator)()){
 G4ParticleDefinition* particle = theParticleIterator->value();
 G4ProcessManager* pmanager = particle->GetProcessManager();
 G4String particleName = particle->GetParticleName();

 if (particleName == "gamma") {
 // Construct processes for gamma
 pmanager->AddDiscreteProcess(new G4GammaConversion());
 pmanager->AddDiscreteProcess(new G4ComptonScattering());
 pmanager->AddDiscreteProcess(new G4PhotoElectricEffect());

 } else if (particleName == "e-") {
 // Construct processes for electron
 pmanager->AddProcess(new G4eMultipleScattering(),-1, 1, 1);
 pmanager->AddProcess(new G4eIonisation(), -1, 2, 2);
 pmanager->AddProcess(new G4eBremsstrahlung(), -1, 3, 3);
 }...

Primary generator
void PrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)
{
 G4int i=0; G4double x0,y0,z0,theta,phi; G4double test;
 x0=y0=z0=0.0;

 phi = CLHEP::twopi*CLHEP::RandFlat::shoot(0.0,1.0)*rad;
 while(i==0){
 theta = CLHEP::RandFlat::shoot(0.0,CLHEP::pi)*rad;
 test = CLHEP::RandFlat::shoot(0.0,1.0);
 if(sin(theta)>test)i++;
 }

 //Particle direction
 G4double kx, ky, kz;
 kx=cos(phi)*sin(theta);
 ky=sin(phi)*sin(theta);
 kz=cos(theta);

 G4ThreeVector dir_vec (kx,ky,kz);
 ...

...
 //Polarization
 G4ThreeVector polar = Polarisation(dir_vec);

 fParticleGun->SetParticleEnergy(4*GeV);
 fParticleGun->SetParticleMomentumDirection(dir_vec);
 fParticleGun->SetParticlePosition(G4ThreeVector(x0,y0,z0));
 //fParticleGun->SetParticlePolarization(polar);

 G4ParticleDefinition* particle=
 G4ParticleTable::GetParticleTable()->FindParticle("mu-");

//G4ParticleTable::GetParticleTable()->FindParticle("opticalphot
on");

 fParticleGun->SetParticleDefinition(particle);
 fParticleGun->GeneratePrimaryVertex(anEvent);

}

Primary generator

Running the application
● Now open g4workshop.cc

int main(int argc,char** argv) {
 // Choose the Random engine and random seed with system time
 // Construct the default run manager

 // Set mandatory user initialization classes
 DetectorConstruction* detector = new DetectorConstruction;
 runManager->SetUserInitialization(detector);

 PhysicsList* physics = new PhysicsList();
 runManager->SetUserInitialization(physics);
 // User action initialization

 runManager->SetUserInitialization(new ActionInitialization(detector));

 // Initialize G4 kernel
 runManager->Initialize();

 // Set visual and interface managers...
}

Running the application
● Go back to terminal on “g4workshop_build/” and do “./g4workshop”
● You should get on terminal description of:

○ Materials composition and characteristics
○ Physics processes per particle type

Optical, electromagnetic and hadronic
○ and list of interactions (ocurred only)

4 GeV μ

