

Triggering on SN with DUNE + some more on simulations

Pierre Lasorak

- More about the event generation for SN
- Back where we left it this morning.
 - Hit finder and then what?
- Clustering algorithm
- Burst trigger
- PDS triggering
- Future of these studies
- Other approach:
 - Machine learning

MARLEY

• Goal: generating a particle list, which are expected to come from a SNv interaction.

Note the * after K

→ FORBIDDEN TRANSITION

- Implements $v_e + Ar \rightarrow e^- + K^*$
- Implements all the decay gammas
- Main channel for neutrino interactions in Ar.

Supernova cooling spectrum (Fermi-Dirac distribution with T = 3.5 MeV) 30000 true v energy perfect reconstruction missing 25000 all neutrons and fragment Os e kinetic energy + Q_{as→as} 20000 15000 10000 5000 10 15 30 35 40 45 50 20 25 Energy (MeV) Steven Gardiner

FIG. 1. Level scheme of ${}^{40}\text{Ar}{}^{40}\text{K}$ relevant to v_e capture argon.

Pierre Lasorak

Radiological generator

A event generator that generate the decay products of the radiological decays.

Background	Origin	Rate	T I 1 I I I I I I I I I I I I I I I I I I
Argon-39 Krypton-85 Radon-222 Argon-42	Intrinsic in the Argon	1.01 Bq/kg \leftarrow 115 mBq/kg 40 mBq/kg 92 μ Bq/kg	for a moment.
Cobalt-60 Potassium-40 Neutron Polonium-210	APA frame structure CPA Surrounding rock material Photon detector system surface	$\begin{array}{c} 45.5 \ \mathrm{mBq}/^{60}\mathrm{Co} \ \mathrm{kg} \\ 4.9 \ \mathrm{Bq}/^{40}\mathrm{K} \ \mathrm{kg} \\ 10^{-5} \ \mathrm{cm}^{-2}\mathrm{s}^{-1} \\ 0.2 \ \mathrm{Bq/m}^2 \end{array}$	

- Takes into account the position:
 - Neutrons are coming from the side
 - Polonium from the surface of the PDS...
- Some of them have a rather "crude" implementation:
 - No coincidence (some decays do have several decays following each other c.f. BiPo, or Uranium-238 spontaneous decays...).
 - Some people are working on this, it's going to get better!!

UNIVERSITY OF SUSSEX

Challenges: Neutrons

- For energy reconstruction:
 - Neutrons travel long distance
 - Very small reactive cross section (anti-resonances!!)
- For background:
 - Neutrons have similar energy depositions to low-E v
 - From spallation + uranium in the rock and cement

- This is why neutrons are a problem:
 - Energy deposition very close to low energy neutrino event (solar, SN)
 - They can be everywhere!

SN interactions Neutron interactions

- Home-made event display (you should try to make yours!)
- Neutron can create similar energy deposition

High energy SN interactions on collection wires

The triggering problem

- So we have all these hits
- How do we create a triggering algorithm from these?
 - Counting?

UNIVERSITY

• SumADC of all the hits?

"Hit" is a data object which contains:

- Time (tick)
- Time extent (RMS)
- Amplitude or integral (or both)
- Channel number

The triggering problem

- So we have all these hits
- How do we create a triggering algorithm from these?
 - Counting?
 - SumADC of all the hits?

Other (not BT)
SN√
APA
CPA
Ar39
Neutron
Krypton
Polonium
Radon
Ar42

"Hit" is a data object which contains:

- Time (tick)
- Time extent (RMS)
- Amplitude or integral (or both)
- Channel number

Clustering

- Instead we cluster the hits:
 - Take the neighbouring hits in time and space and cluster them.
 - Order the hits by channel
 - Cluster by channel
 - Order the hits by time
 - Cluster by time
 - Require that the cluster has a certain extent and number of hit.
 - This step will get rid of single hits of Ar-39
 - Very simple reconstruction, that can be run online.
 - Good efficiency after 20 MeV
 - Unsure what the backtracker is doing here, take this plot with caution

Cluster is a bag of hits close in space and / or time

Burst trigger

- Count the number of clusters in a time window (10 seconds).
- If the number of clusters is bigger than a threshold, issue a trigger that will record the whole FD for 30 seconds.
- What create the clusters when there is no SN?
 - Mainly neutron and Radon which have high energy.

- What should be this threshold so that there is not too much fake??
 - From Simon's talk, once per month is OK

Burst Trigger

 From the background rate, one can derive the background cluster rate, i.e frequency of clusters when there is no SN.

$$BR = \frac{n_{\text{background clusters}}}{n_{\text{events generated}} \times T_{\text{event}}} \times \frac{V_{10 \text{ kT}}}{V_{1 \times 2 \times 6}}$$

• What is the rate of few clusters?

$$FR = BR \times \sum_{n=n_{\text{Thr}}}^{\infty} \text{Poisson} (\mu = T_{\text{Integr}} \times BR, n)$$

• Integrate the tail of the Poisson distribution.

Burst Trigger

• Now want to know how much v the SN has to create to trigger.

$$\epsilon_{\text{Trigger}} = \sum_{n=n_{\text{Thr}}}^{\infty} \text{Poisson} \left(\mu = n_{\text{detected clusters}}, n\right)$$

- Convert the threshold cluster + efficiency into SN triggering efficiency.
- Convert number of events to distance.

Efficiency vs. Distance to SN, Fake Trigger Rate: 1/Month

Burst Trigger

Galactic Neighbourhood Coverage with Fake Trigger Rate 1/Month/10kT

OF SUSSEX

PDS SN triggering

12/11/2018

- Same algorithm can be applied in the case of the PDS.
- Clustering on optical hits rather than TPC hit primitives.
- Gets comparable results to the TPC studies
 - Black → Nominal design
 - Red \rightarrow Dip Coated design
 - Magenta \rightarrow Improved double shift design
 - Green → ARAPUCA1.3 design

All the SN hits in an event

- Of course the TPC and PDS trigger should be somehow combined. This is work in progress.
- Aim is to get the background so low that you can do solar neutrinos...
- Alternative approach:
 - SNv interaction in 1 APA

- University of Columbia (it's Columbia not Colombia) used machine learning to trigger.
- Image recognition to classify event as SN, NDk, beam...
- More involve on the hardware side, but got comparable results, see talk at previous CM.

Future / Alternative approach

- Of course the TPC and PDS trigger should be somehow combined. This is work in progress.
- Aim is to get the background so low that you can do solar neutrinos...
- Alternative approach:
 COLUMBIA UNIVERSITY
 IN THE CITY OF NEW YORK

RAD score cut	RAD frame efficiency	Data rate (RAD)	SN frame efficiency	n-nbar frame efficiency	atmo. nu frame efficiency	p-decay frame efficiency	cosmic frame efficiency
<0.05	0.56% (99.44% rejection)	6.4 GB/s (201 PB/year)	89%	100%	92%	99%	92%
<0.01	0.18% (99.82% rejection)	2.05 GB/s (65 PB/year)	86%	100%	91%	99%	92%
<0.001	0.031% (99.969% rejection)	350 MB/s (11 PB/year)	77%	100%	89%	98%	90%
<0.0002	0.011% (99.989% rejection)	125 MB/s (3.9 PB/year)	69%	100%	87%	97%	88%

SN probability weighted burst efficiency

- University of Columbia (it's Columbia not Colombia) used machine learning to trigger.
- Image recognition to classify event as SN, NDk, beam...
- More involve on the hardware side, but got comparable results, see talk at previous CM.

NEUTRINO EXPERIMENT

Conclusion

- SN triggering is using a simpler reconstruction algorithm that and can be run online.
- We have shown that the combination Clustering + Burst trigger can trigger efficiently of SN from the Milky Way.
- More work to combine both triggering algorithms.
- More work to estimate the backgrounds.