Low-energy Lepton Observables in the MRSSM

Hyejung Stöckinger-Kim

collaboration with D. Stöckinger and W. Kotlarski

arXiv:1902.0665

TU Dresden

PASCOS2019 Manchester, 1. July 2019

$$\mu \to e\gamma$$
: $B_{\mu^+ \to e^+\gamma} = \frac{\Gamma(\mu \to e\gamma)}{\Gamma(\mu \to e\nu_\mu \bar{\nu}_e)} < 4.2 \times 10^{-13}$ MEG 2016

Future MEG-II: expect to improve sensitivity $\sim 5\times 10^{-14}$

 $\mu \rightarrow e: B_{\mu Au \rightarrow eAu} < 7 \times 10^{-13}$ SINDRUM 2006 Future COMET and Mu2E: expected 7.2 × 10⁻¹⁵

- Parameter ranges? Correlation among them?
- LFV processes $\propto \delta_{12}^{L/R}$ (1. and 2. generation slepton mixing)

1 Model: MRSSM

- $\label{eq:g-2} 2 \ \mathrm{g-2} \ \mathrm{and} \ \mu \to e \gamma$
- $\bigcirc \mu \to e$
- 4 Correlation between the observables

Minimal R-Symmetric Supersym. SM

MSSM with a continuous unbrocken R-symmetry $U(1)_R$: R-charge

[Kribs, Poppitz, Weiner]

$$\text{enlarged} \begin{cases} \mathsf{Higgs sector:} \ \hat{R}_{u,d} \\ \mathsf{Gauge sector:} \ \hat{O}, \hat{T}, \hat{S} \end{cases}$$

Fields	Fermion		Boson	
Matter	$l,~e_R^*$	0	\widetilde{l} , \widetilde{e}_{R}^{*}	+1
	q , d_R^st , u_R^st	0	$ ilde{q}$, $ ilde{d}^{*}_{R}$, $ ilde{u}^{*}_{R}$	+1
Gauge	${ ilde g}$, ${ ilde W}$, ${ ilde B}$	+1	g, W, B	0
Adjoint chiral	$\tilde{O},\tilde{T},\tilde{S}$	-1	O, T, S	0
$H ext{-Higgs}$	$\tilde{H}_{u,d}$	-1	$H_{u,d}$	0
R-Higgs	$\tilde{R}_{u,d}$	+1	$R_{u,d}$	+2

 \tilde{e}_R , \tilde{u}_R , \tilde{d}_R : -1

MRSSM Superpotential and Interaction terms

$$\begin{split} W_{\text{sup.pot.}}^{\text{MRSSM}} &\ni \mathbf{\Lambda}_{d} \hat{R}_{d} \cdot \hat{T} \hat{H}_{d} + \lambda_{d} \hat{S} \hat{R}_{d} \cdot \hat{H}_{d} + (d \to u) \text{ Yukawa-like sup.pot. parameters:} \\ \mathcal{L}_{\text{int}} &\ni \sum_{(f,\tilde{f}),g} \left(\overline{\tilde{\chi}_{A}^{0}} [n_{gA}^{\mathsf{L}(f)} \mathsf{P}_{\mathsf{L}} + n_{gA}^{\mathsf{R}(f)} \mathsf{P}_{\mathsf{R}}] f_{g} \tilde{f}_{\mathsf{R}}^{\dagger} + \overline{\tilde{\chi}_{A}^{0c}} [o_{gA}^{\mathsf{L}(f)} \mathsf{P}_{\mathsf{L}} + o_{gA}^{\mathsf{R}(f)} \mathsf{P}_{\mathsf{R}}] f_{g} \tilde{f}_{\mathsf{L}}^{\dagger} \right) \\ &+ \sum_{(f',\tilde{f}),g} (\overline{\tilde{\chi}_{A}^{-}} [c_{gA}^{\mathsf{L}(f')} \mathsf{P}_{\mathsf{L}} + c_{gA}^{\mathsf{R}(f')} \mathsf{P}_{\mathsf{R}}] f'_{g} \tilde{f}_{\mathsf{L}}^{\dagger}) \end{split}$$

Gaugino interactions: n^{R} , o^{L} , c^{L} Higgsino interactions: n^{L} , o^{R} , $c^{R} \leftarrow$ suppressed by small Yukawa couplings

MRSSM: Λ_d , λ_d , no tan β -enhancement like MSSM.

Observables and diagrams

- a_{μ} and $g \rightarrow e\gamma$ always correlated
- ② correlation of a_{μ} and $\mu \rightarrow e$ ↑ when dipole A_2 dominates

(a) large λ_d or Λ_d

▶
$$\mu \to e\gamma$$
, $\mu \to e \propto \delta_{12}^{L,R}$
slepton-generation-mixing

 M_B^D , M_W^D , μ_d , λ_d , Λ_d , $m_{\tilde{l},22}$, $m_{\tilde{e},22}$ $((m_{\tilde{e}})_{11} = (1.5)m_{\tilde{e},22}, (m_{\tilde{l}})_{11} = (1.5)m_{\tilde{l},22})$

dimensionless LFV parameters: $\delta_{12}^{L} \equiv \frac{(m_{\tilde{\ell}}^2)_{12}}{m_{\tilde{\ell},11}m_{\tilde{\ell},22}}, \ \delta_{12}^{R} \equiv \frac{(m_{\tilde{e}}^2)_{12}}{m_{\tilde{e},11}m_{\tilde{e},22}}$

Scenario	light masses			
BHL BHR WHL Equal-mass	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{split} \delta_{12}^{R} &\neq 0 \\ \delta_{12}^{L} &\neq 0 \end{split}$	WHR, BHR BHL	BR BL, WL

 λ 's, Λ 's: perturbative ($|\lambda_i|, |\Lambda_i| < 4$) $|\lambda_u|, |\Lambda_u| < 2$ from EW prec. T-parameter

LHC: small mass splitting between sparticles, $M_{\tilde{\chi}_1^\pm}>92$ Gev, $m_{\tilde{\mu}_{\rm R}}>94$ Gev

Numerical analysis of g-2

Smaller hyper-charge: BHL < BHR WHL \leftarrow larger SU(2) gauge coupling λ_d , Λ_d enhancement: WHR, BHR, BHL BL, BR, WL: simple, mainly gauge couplings Equal mass cases upper 3 bands: $\Lambda_d = 4$ lower 3 bands: $\Lambda_d = 0$ $a_{\mu} \text{ and } \mu \rightarrow e\gamma$

$$\begin{split} a_{\mu} \propto A_{2}^{\bar{\mu}\mu\mathsf{L}} + A_{2}^{\bar{\mu}\mu\mathsf{R}} \\ B_{\mu \to e\gamma} \propto |A_{2\mathsf{red}}^{\bar{e}\mu\mathsf{L}}|^{2} \times |\delta_{12}^{\mathsf{L}}|^{2} + |A_{2\mathsf{red}}^{\bar{e}\mu\mathsf{R}}|^{2} \times |\delta_{12}^{\mathsf{R}}|^{2} \end{split}$$

$\mu ightarrow e$ with respect to an eta, $m_{ ilde{q}}$, λ_u

Useful quantity: $R(N) \equiv \frac{B_{\mu N \to eN}}{B_{\mu \to e\gamma}}$; dependence on the δ 's drops out Especially for A_2 dominance:dipole A_2 form factor drops out; perfect correlation; only dependent on the element used in the experiment. [Kitano, Koike, Okada, 2002]

 $R^{\mathsf{only}\,\mathsf{dip.}}(Al) = 0.0026.$

 \rightarrow MEG limit on $\mu \rightarrow e\gamma$ determines the maximum possible $\mu \rightarrow e$ conversion rate Impace of the additional form factors $A_1, A_Z, A_{\text{hox}} \rightarrow$ deviation

Large $\lambda_u \to A_Z$ dominance(Z-Higgsino coupling $\sim v_u \lambda_u(\Lambda_u)$ or $\sim v_d \lambda_d(\Lambda_d)$)

Hyejung Stöckinger-Kim (TU Dresden)

Dipole A_2 dominates, correlation strong, g-2 large

Summary

- MRSSM: enlarged Higgs and Gauge sector
- λ_d , Λ_d enhancement for g-2
- Correlation between g-2, $\mu \to e \gamma$ and $\mu \to e$

- Dipole A_2 dominance
- \rightarrow strong correlation between the low-energy lepton opservables
- Future experiment results:
- g-2(fermilab), $\mu \to e\gamma$ (MEG-II), $\mu \to e$ (COMET, Mu2E)