Asymptotic safety and flavour phenomenology in extensions of the Standard Model

Tom Steudtner University of Sussex

in collaboration with Prof. G. Hiller, C. Hormigos-Feliu (TU Dortmund) Prof. D.F. Litim (U Sussex)

> PASCOS 2019 01.07.2019

UNIVERSITY OF SUSSEX

Motivation

- Asymptotic safety: high-energy behaviour of theory is controlled by UV fixed point
- model parameters, observables remain finite, theory is well defined
- provides powerful paradigm for model building
 - ➤ UV completion, no Landau poles
 - ➤ extends idea of asymptotic freedom
- potential to explain further shortcomings of the SM: $(g-2)_{\mu}$...

Asymptotic safety

• requires fixed point in RG running of all renormalised couplings $\alpha_i(\mu)$

$$\beta_i = \frac{\partial \alpha_i}{\partial \ln \mu} = 0$$

- fundamental building block is a special gauge-Yukawa theory [Litim, Sannino, JHEP 2014][Litim, Sannino, Mojaza, JHEP 2016]
- requires N_F new fermions, $N_F \times N_F$ uncharged scalars, Yukawa interaction, $SU(N_C)$ gauge
- SM extensions have already been studied [Bond, Hiller, Kowalska, Litim, JHEP 2017] [Percacci et al., JHEP 2018] (SM + BSM fermions + scalar)

What is new here?

- SM extension that actually connects with the SM flavour symmetry
- mixing with SM fermions/ Higgs via new Yukawa interactions / portal couplings
- fix $N_F = 3$, BSM fermions colorless but with weak isospin, hypercharge
 - ➤ 6 different models

Asymptotic safety

• requires fixed point in RG running of all renormalised couplings $\alpha_i(\mu)$

$$\beta_i = \frac{\partial \alpha_i}{\partial \ln \mu} = 0$$

- fundamental building block is a special gauge-Yukawa theory [Litim, Sannino, JHEP 2014][Litim, Sannino, Mojaza, JHEP 2016]
- requires N_F new fermions, $N_F \times N_F$ uncharged scalars, Yukawa interaction, $SU(N_C)$ gauge
- SM extensions have already been studied [Bond, Hiller, Kowalska, Litim, JHEP 2017] [Percacci et al., JHEP 2018] (SM + BSM fermions + scalar) Model (R_3, R_2, Y_F)

What is new here?

- SM extension that actually com
- mixing with SM fermions/ Higg
- fix $N_F = 3$, BSM fermions colo
 - ➤ 6 different models

ſ	Model	(R_3, R_2, Y_F)]
ſ	А	(1, 1, -1)]
r	В	$({f 1},{f 3},-1)$	r sv
G	\mathbf{C}	$ig(1,2,-rac{1}{2}ig)$	acti
8	D	$(1,2,-rac{3}{2})$	
0	${ m E}$	(1, 1, 0)	spin
	\mathbf{F}	$({f 1},{f 3},0)$	

r symmetry actions / portal couplings spin, hypercharge

Renormalisable BSM Interactions

• new Yukawa interactions

$$-\mathcal{L}_{yuk} = y \,\overline{\psi}_{Li} \, S_{ij} \, \psi_{Rj} + \kappa_{ij} \,\overline{L}_i \, H \, \psi_{Rj} + \kappa' \,\overline{E}_i \, S_{ij}^{\dagger} \psi_{Lj} + \text{h.c.}$$

BSM Yukawa interaction

BSM-SM mixing, (different in each model)

only in model A+C

• extended scalar quartic sector

$$-\mathcal{L}_{qrt} = \lambda \left(H^{\dagger}H\right)^{2} + \delta \left(H^{\dagger}H\right) \left(\operatorname{tr} S^{\dagger}S\right) + u \operatorname{tr} \left(S^{\dagger}S\right)^{2} + v \left(\operatorname{tr} S^{\dagger}S\right)^{2}$$

Higgs quartic

Higgs portal

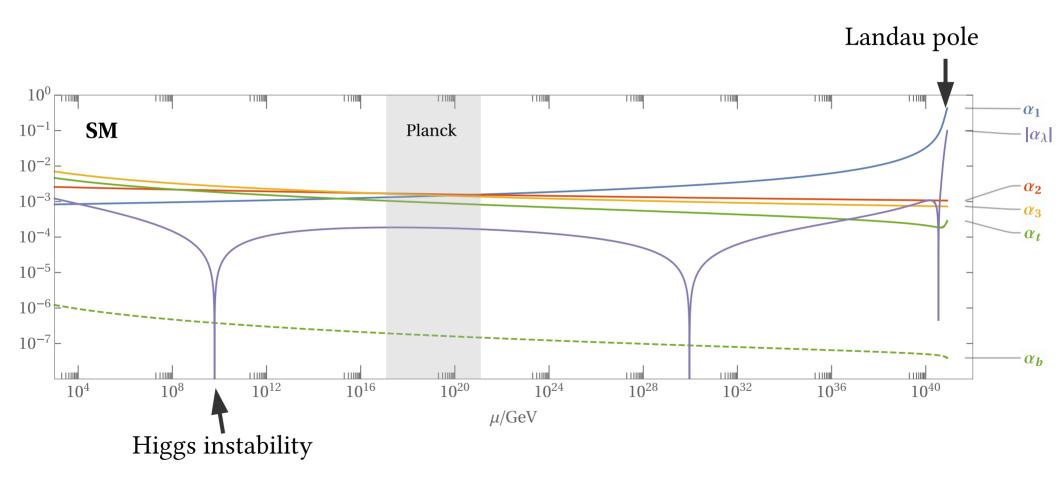
BSM scalar self interactions

- terms with massive parameters not shown here
- BSM scalar may acquire VEV, scalar and fermion mixing
- RGEs can be computed in perturbation theory [Machacek, Vaughn, NPB 1983-85]

Bottom-Up approach

- matching to SM at BSM fermion mass scale $M_F = 1 \text{ TeV}$
- investigate RG flow up to Planck scale M_{Pl}
 - ➤ more general approach of UV safety: free of instabilities, poles
 - → quantum gravity will change the game
- convenient parametrisation: $\alpha_1 = g_1^2/(4\pi)^2$ $\alpha_y = y^2/(4\pi)^2$ $\alpha_\lambda = \lambda/(4\pi)^2$
- SM fixes $\alpha_{1,2,3,t,b,\lambda}$, need to find matching conditions for BSM Yukawas $\alpha_{y,\kappa,\kappa'}$ and quartics $\alpha_{\delta,u,v}$
- study BSM critical surface of matching conditions from which safe RG trajectories flow towards UV
- complete two-loop analysis capture non-leading order effects

SM flow

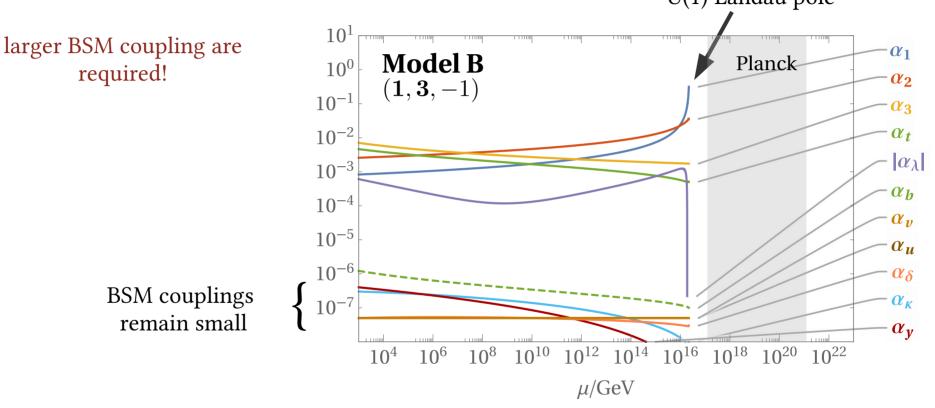


Feeble BSM couplings: the good

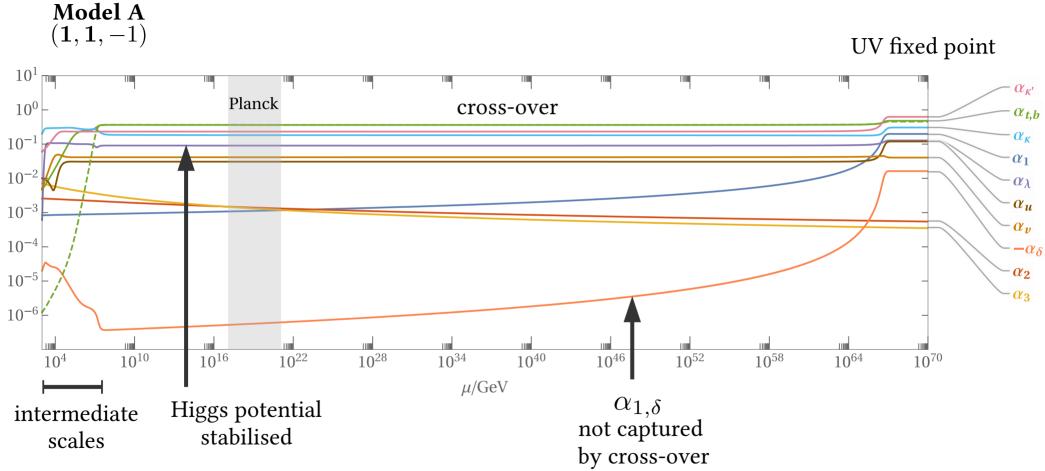
Landau pole in deep UV first approach: have 10¹ BSM so small they do α_1 **Model** A Planck 10^{0} not contribute α_2 (1, 1, -1) 10^{-1} α_3 α_t 10^{-2} SM + BSM fermion running α_{λ} 10^{-3} α_{b} 10^{-4} α_v α_u 10^{-5} 10^{-6} $\alpha_{\kappa'}$ 10^{-7} α_{κ} BSM couplings α_y $10^{12} \ 10^{14} \ 10^{16} \ 10^{18} \ 10^{20} \ 10^{22}$ 10^{6} 10^{10} 10⁸ 10^4 remain small μ/GeV Higgs instability remains

6

Feeble BSM couplings: the bad U(1) Landau pole

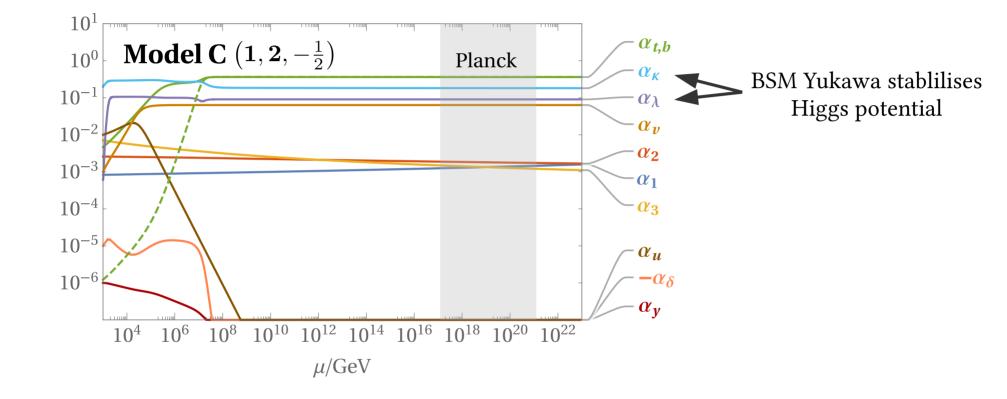


UV fixed points

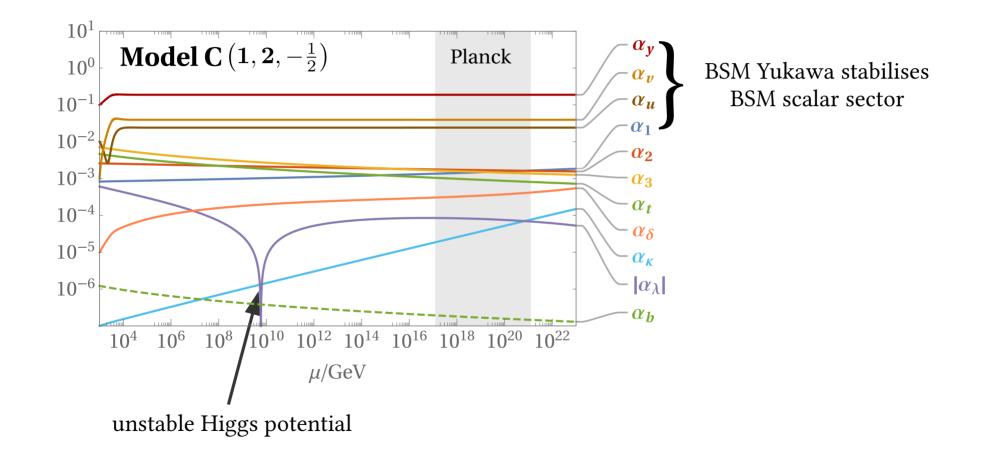


large Yukawas slow down running - different combinations promise more setups

Safety until Planck scale



Safety until Planck scale



Conclusion about UV safety

- some models allow feebly coupled BSM sector
- weakly coupled BSM sector can
 - ➤ stabilise Higgs potential
 - → push Landau poles past M_{Pl}
- BSM Yukawas play crucial role in these tasks

Can we get an experimental handle on BSM fermion and scalar masses $M_{F,S}$? Are there any bounds from e.g. LHC data? How can we identify these models in measurements?

Experimental handles

- lower bound on BSM fermion mass M_F from e.g. Drell-Yan process [Farina et al., PRB 2017] $M_F \gtrsim \mathcal{O}(10^2) \text{ GeV}$ 1 TeV is reasonable choice
- bound on scalar mixing from Higgs signal strength measurement $|\beta| \lesssim 0.2$
 - → favours heavy scalar [Patrignani et al., CPC 2016]
- charged lepton flavour violation constraints BSM Yukawa sector •
- Production at pp/ll colliders via BSM Yukawa and gauge interactions
 - → sensitive on model, representations
- BSM fermion decays promptly $\Gamma(\psi \to h \, l) \sim \alpha_{\kappa} M_F \left(1 \frac{m_h^2}{M_F^2}\right)^2$ $M_{F,S}$ mass hierarchy observable via scalar decay $S \to \psi l, \, \psi \psi$
- Decays and fermion mixing provides insight into BSM charges, Yukawa sector

• measured deviation from SM for muon and electron magnetic moments

$$a_{\mu}^{\exp} - a_{\mu}^{SM} = 268(63)(43) \cdot 10^{-11}$$

$$\Rightarrow + 3.5 \sigma$$
[Tanabashi et al., PRD 2018]

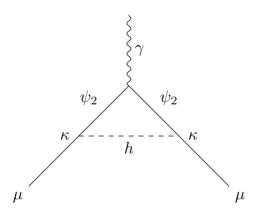
 $a_e^{\exp} - a_e^{SM} = -88(28)(23) \cdot 10^{-14}$ $\Rightarrow -2.3 \sigma$ [Hanneke, Fogwell, Gabrielse, PRL 2008] 13

[Parker et al., Science 2018]

• electron and muon discrepancies have different sign

Can we account for this in our models?

• two new contributions

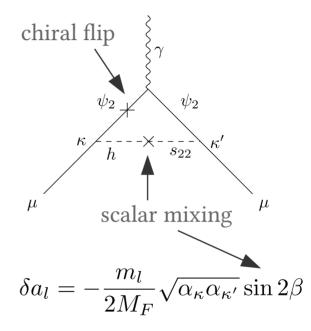


• different level of supression

$$\delta a_l \sim \alpha_\kappa \, \frac{m_l^2}{M_F^2}$$

can account for muon anomaly with little impact on electron one

$$M_F = 1 \,\mathrm{TeV}: \, \alpha_\kappa \sim \mathcal{O}(1)$$



can target single generation (BSM vacuum structure)

sign is tunable \rightarrow can contribute to either (g-2)

 10^{1} two new contributions **Model** A $(g-2)_{\mu}$ $\alpha_{t,b}$ 10^{0} α_{κ} 10^{-1} α_{λ} α_v 10^{-2} ψ_2 ψ_2 α_3 10^{-3} α_2 h α_1 10^{-4} μ μ 10^{-5} $\alpha_{\kappa'}$ different level of supression $\alpha_{\mathbf{u}}$ 10^{10} 10^{11} 10^{6} 10^{7} 10^{8} 10^{9} 10^{5} 10^{12} 10^{4} $\delta a_l \sim \alpha_\kappa \, \frac{m_l^2}{M_F^2}$ μ/GeV

can account for muon anomaly with little impact on electron one

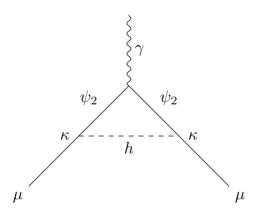
$$M_F = 1 \,\mathrm{TeV}: \, \alpha_\kappa \sim \mathcal{O}(1)$$

can target single generation (BSM vacuum structure)

sign is tunable \rightarrow can contribute to either (g-2)

14

• two new contributions

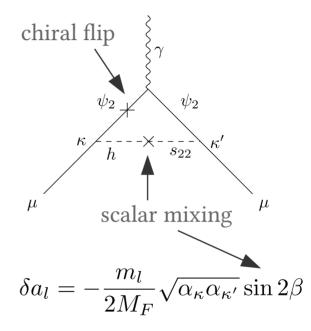


• different level of supression

$$\delta a_l \sim \alpha_\kappa \, \frac{m_l^2}{M_F^2}$$

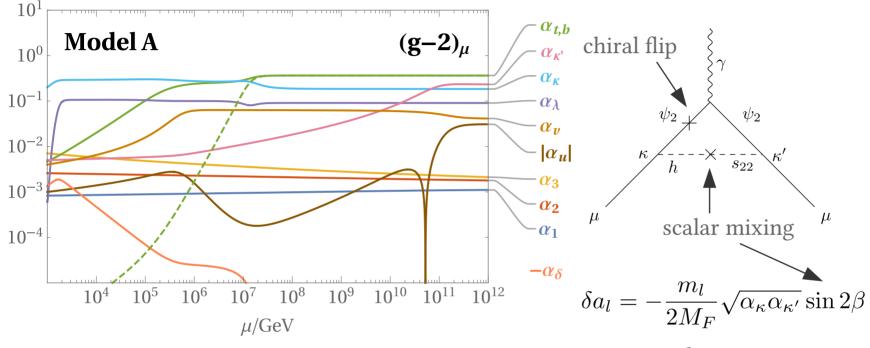
can account for muon anomaly with little impact on electron one

$$M_F = 1 \,\mathrm{TeV}: \, \alpha_\kappa \sim \mathcal{O}(1)$$



can target single generation (BSM vacuum structure)

sign is tunable \rightarrow can contribute to either (g-2)



can target single generation (BSM vacuum structure)

sign is tunable \rightarrow can contribute to either (g-2)

14

Conclusion

- explored new set of BSM models, safe until the Planck scale
- discussed some phenomenology
- can stabilise Higgs and BSM scalar sector
- can explain $(g-2)_{\mu,e}$

Thank you for your attention

Backup

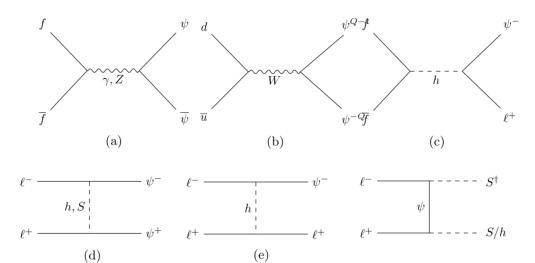
Field content

- SM gauge interactions, fermions, and Higgs H
- 3 Vector-like BSM fermions $\psi_{L,R}$ with mass M_F , carrying electroweak charge, interaction with SM Higgs + leptons

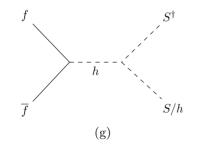
Model	(R_3, R_2, Y_F)
A	(1, 1, -1)
В	(1, 3, -1)
C	$\left(1,2,-rac{1}{2} ight)$
D	$(1, 2, -\frac{3}{2})$
E	(1, 1, 0)
F	$({f 1},{f 3},0)$

• Meson-like BSM scalar S_{ij} , (3 x 3) flavour matrix

Production channels



(f)



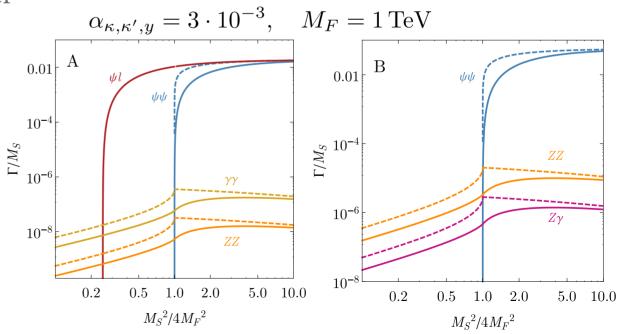
Decay

- Decay hierachies depend on BSM fermion/scalar mass $M_{F,S}$ and model
- BSM fermions undergo prompt decay $\Gamma(\psi \to h \, l) \sim \alpha_{\kappa} M_F \left(1 \frac{m_h^2}{M_F^2}\right)^2$ $M_F = 1 \text{ TeV}, \ \alpha_{\kappa} = 3 \cdot 10^{-3} : \Gamma^{-1} \sim \mathcal{O}\left(10^{-25}\right) \text{ s}$

higher charged ones live longer

- BSM scalar decays via y, κ' or into gauge bosons $(\psi$ -triangle)
- fermion mixing gives additional decays

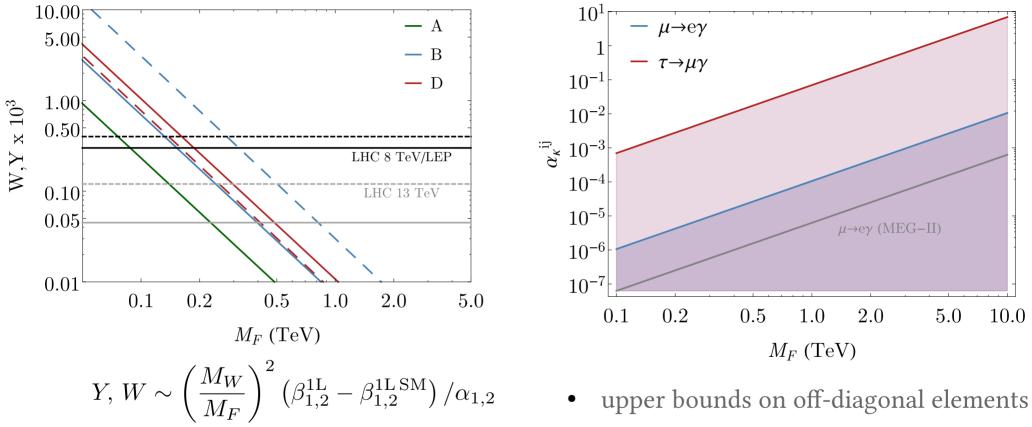
 $S \to l l$



Constraints

Drell-Yan process

Charged lepton flavour violation

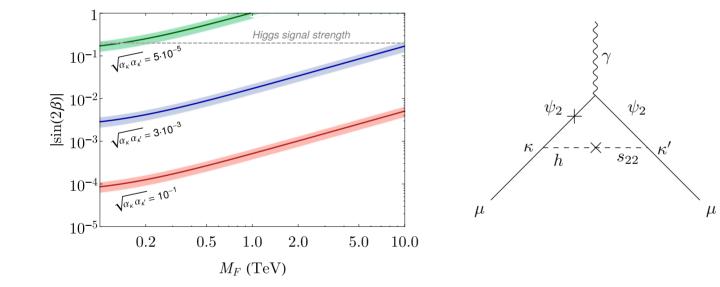


• lower bound on fermion mass M_F , 1 TeV is fine

 $\alpha_{\kappa}^{ij} = (4\pi)^{-2} \sum \kappa_{mi} \kappa_{mj}$

Anomalous magnetic moments

$$\delta a_l = -\frac{m_l}{2M_F} \sqrt{\alpha_\kappa \alpha_{\kappa'}} \sin 2\beta$$



Where does the stability come from?

 separation of scalar sectors, two RG subsystems with supressed cross talk as long as

 $\alpha_{1,2,e,y,\delta} \approx 0$

$$egin{array}{c|c} H,\,\psi_L,\,L,\,Q,\,U,\,D & & S,\,\psi_R,\,E \ & \kappa,\,\lambda & & & \kappa',\,u,\,v \end{array}$$

- both Higgs quartic and BSM scalar sector stabilised by Yukawas
- requires large values of $\alpha_{\kappa} \simeq 0.2$ or higher