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DARK MATTER
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Evidence:

Traditional & well motivated candidate:  WIMP w/ thermal freeze-out

- Equilibrium history determines the abundance → Predictive

- Problem: null detection in direct/indirect experiments & colliders

...thus we are led to think about other candidates

Properties: 

- Behaves (almost) as cold dark matter (CDM)

1) Occupies ~30% of the total energy of the Universe

2) Long-lived (> Gyr)      3) Suppressed interaction with SM    ...

Galaxy rotation curves    /    CMB    /    Bullet cluster    /    ...
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length scale
Gpc Mpc

02

SMALL SCALE ISSUES

Linear matter

power spectrum P(k)

[Tegmark et al. '04]

CDM prediction
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length scale
Gpc Mpc

CMB Galaxy survey weak lensing Lyman α
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Linear matter

power spectrum P(k)

[Tegmark et al. '04]

？

CDM prediction
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SMALL SCALE ISSUES

CDM matches observations on large scales

- Missing satellite: [Klypin, Kravtsov, Valenzuela, Prada '99  /  Moore, Ghigna, Governato, Lake, Quinn, Stadel, Tozzi '99]

Number of observed dwarf galaxies < prediction from N-body simulations

- Too big to fail (to be detected):

Largest subhalos predicted in numerical simulations are too bright to escape detection

[Boylan-Kolchin, Bullock, Kaplinghat '11]

- Core-cusp problem: [Flores, Primack '94]

Observations infer cored halo profile, while theory prediction (from NFW) is more cuspy

In small scales, however, sevaral possible deviations from CDM:

So, here we consider modification of dark matter properties from CDM

(though correct implementation of baryon physics may solve these problems, of course)
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BEYOND-WIMP 
DARK MATTER

Warm dark matter
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All these have the possibility of

- Free streaming suppress small scale density fluctuations

- Gradually produced from thermal bath through tiny couplings

Self-interacting dark matter [Spergel, Steinhardt '00]

reducing matter power spectrum at small scales

- Never thermalizes with SM thermal bath or within itself

Feebly interacting massive particle (FIMP) [Hall, Jedamzik, March-Russell, West '10]

Fuzzy dark matter [Hu, Barkana, Gruzinov '00]

-                            →  Quantum pressure prevents gravitational clusteringmDM ∼ 10−22 eV

[Tim Tait]
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ACTUAL PROCESS 
TO PUT CONSTRAINTS

Different types of expertise are required:

05

ℒ = ⋯

Dark matter models Observables
Linear matter

power spectrum

(Possibly) particle physics experts (Possibly) astrophysics experts

Ly-α forest spectrum

Number of Milky-way satellites

e.g.
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e.g.  FIMP case

-  Write down Boltzmann eq.

- Convert to matter power spectrum

  and integrate to get DM phase space distribution

∂t fDM + ⋯ =
C(t, p)
EDM
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Dark matter models Observables
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Different types of expertise are required:

05

ℒ = ⋯

(Possibly) particle physics experts (Possibly) astrophysics experts

Ly-α forest spectrum

Number of Milky-way satellites

e.g.

e.g.  FIMP case

-  Write down Boltzmann eq.

- Convert to matter power spectrum

  and integrate to get DM phase space distribution

∂t fDM + ⋯ =
C(t, p)
EDM

Traditionally...

parametrized by single parameter (          )mWDM

However, 

this is not enough to cover various DM models

- N-body and/or

hydrodynamic simulations

Bottleneck
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SUMMARY

We propose a simple usage of neural network as a unified format for nonlinear mapping
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to facilitate communication between both sides:

Might be applicable to other situations as well

Neural networkNeural network

and show that it indeed works well

(multiple parameters)
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TALK PLAN

0. Introduction & summary

1. How neural network helps -- FIMP example

✔

2. Summary
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MODEL
→ SPECTRUM

We take FIMP example (Both are 3-parameter setups)
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In reality we have one more intermediate step:

Dark matter models
DM phase space Linear matter

power spectrumdistribution

Case A: ℒ ⊃ yχϕΨ̄χ (+ h . c.)
ϕ

Ψ
χ (DM) possible late-time

entropy injection+

Case B: ℒ ⊃ yχϕΨ̄χ + yf ϕf̄ f (+ h . c.)
ϕ

Ψ
χ (DM)

Ψ

χf
f̄

Ψ χ

f f̄

Decay Scattering

For concrete models, see

[Bae, Kamada, Liew, Yanagi '17 & '18]

Integration of

Boltzmann eq.
(Public)

Boltzmann code

We use CLASS
[Blas, Lesgourgues, Tram]
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SPECTRUM

αβγ parametrization of linear matter power spectrum
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[Murgia, Merle, Viel, Totzauer, Schneider '17]

P(k)
PCDM(k)

= [1 + (αk)β]2γ

This is practically enough to cover the linear matter power spectrum

realized in various DM models
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As a simplified procedure (instead of full nonlinear simulation), we try

SPECTRUM
→OBSERVABLE

Unfortunately we are not experts on N-body or hydrodynamic simulations
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These are known to give reasonable constraints, though calculated from linear power

1) Extended Press-Schechter approach (for Milky-way satellite counts) : Nsat

2) 1D power spectrum ratio (for Lyman-α spectrum) : δA

[Schneider, MNRAS 451('14)]

Details  →  Backup slides

[Schneider, JCAP 1604('16)]



Ryusuke Jinno / 161906.09141

NEURAL
NETWORK
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Artificial neuron mimics biological neuron

x1

x2

xn

wn

w1

w2
X

xiwi f z

input

weight

nonlinear
function

output

sum

z = f
⇣X

xiwi + b
⌘ f(y)

y

Diagramatic notation

Equation

f : ReLU (rectified linear unit)

wi

b

: weight

: bias

⇢

Neural network Neural network
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Neural network = network of artificial neurons
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x1 = f (W1xin + b1)

xn = f (Wnxn�1 + bn)

xout = WoutxN + bout

⇢
(2  n  N)

NEURAL
NETWORK Neural network Neural network
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WHY NEURAL NETWORK?

Efficiently learns nonlinear relations between multiple parameters 

Learns without being explicitly taught

x1 = f (W1xin + b1)

xn = f (Wnxn�1 + bn)

⇢
(2  n  N)

xout = WoutxN + bout

Useful public libraries are available e.g.
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Provides a unified format with a few matricies and vectors
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RESULTS

13

1) From Nsat

Case A Case B

This

Note : we derived these constraints for the first time

Constraints directly estimated without neural network:

Collaboration btwn. particle physics & astrophysics experts would be able to do this
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RESULTS

Constraints directly estimated without neural network:
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This

Collaboration btwn. particle physics & astrophysics experts would be able to do this

2) From δA

Note : we derived these constraints for the first time

Case A Case B
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RESULTS

Neural network (Case A):
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Particle physics & astrophysics experts will be able to report separately

Neural network Neural network

This side

Original data

Neural network fit

α

α
model
params

β

β
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RESULTS

Neural network (Case B):

14

Neural network Neural network

This side

Original data

Neural network fit

α

α
model
params

β

β

Particle physics & astrophysics experts will be able to report separately
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RESULTS

14

Neural network Neural network

This side

Skipped!!

(essentially the same as the left side)
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RESULTS

Neural network (Combined):

15

Particle physics & astrophysics experts will be able to report separately

Neural network Neural network

Combined

1) From Nsat

Case A Case B

Nicely reproduces the direct constraints
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RESULTS

Neural network (Combined):
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Particle physics & astrophysics experts will be able to report separately

Neural network Neural network

Combined

Case A Case B

Nicely reproduces the direct constraints

2) From δA
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SUMMARY

We propose a simple usage of neural network as a unified format for nonlinear mapping
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to facilitate communication between people with different expertises

Might be applicable to other situations as well

Neural networkNeural network

and show that it indeed works well for FIMP case



BACK UP
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NEURAL NETWORK:
SUPERVISED LEARNING

How to train the neural network with supervised learning

b ! b� ↵
@E

@b
W ! W � ↵

@E

@W

- Training of neural network = update of weights      and biases    using 

- Then we can define how poorly the machine predicts:

Note : there are more sophisticated algorithms, e.g.  AdaGrad, Adam, ...

Error function E =
e.g.

E

↵ : constant

- Suppose we have many data of (xin, x
(true)
out )

X

data

X

i:component

���(xout)i � (x(true)
out )i

���

b ! b� ↵
@E

@b
W ! W � ↵

@E

@W
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[Klypin, Kravtsov, Valenzuela, Prada '99]

MISSING SATELLITE PROBLEM
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LYMAN-ALPHA FOREST

http://www.astro.ucla.edu/~wright/Lyman-alpha-forest.html

http://www.astro.ucla.edu/~wright/Lyman-alpha-forest.html

