Primordial Kerr Black Holes

Alexandre Arbey

Lyon University

Based on AA, J. Auffinger and J. Silk, arXiv:1906.04196 and 1906.04750

PASCOS 2019

Manchester – July 4th, 2019

Introduction	Kerr PBH Hawking radiation	Gamma ray constraints	BlackHawk	Conclusions
000				
Dark Matter				

Cosmic Microwave Background

Galaxy rotation curves

Galaxy clusters collision

source: Chandra

Gravitational lensing

Observations of large scale structures, galaxies and cosmology show that 90% of matter is dark

Introduction	Kerr PBH Hawking radiation	Gamma ray constraints	Black Hawk 00	Conclusions
Primordial I	Black Holes			
Plausible D	M condidates			
• no Star	ndard Model / General Rela	itivity extension		

- dynamically cold
- BH existence (somehow) proven
- mass ranges still available for BHs to represent all of DM

Constraints from PBH Hawking radiation, lensing and dynamics observations

Introduction 000	Kerr PBH Hawking radiation	Gamma ray constraints	Black Hawk OO	Conclusions ⊖
Primordial Bla	ck Holes			

Multiple inflationary origins

- collapse of large primordial overdensities
- phase transitions
- collapse of cosmic strings, domain walls

PASCOS 2019 - Manchester - July 4th, 2019

Introduction	Kerr PBH Hawking radiation	Gamma ray constraints	BlackHawk	Conclusions
	00000			
BH Hawking	radiation			

Fundamental equation for Kerr BHs

Rate of emission of Standard Model particles i at energy E by a BH of mass M and spin parameter a^* :

$$Q_i = \frac{\mathrm{d}^2 N_i}{\mathrm{d}t \mathrm{d}E} = \frac{1}{2\pi} \sum_{\mathrm{dof.}} \frac{\Gamma_i(M, E, a^*)}{e^{E/T(M, a^*)} \pm 1}$$

 Γ_i is the greybody factor (~ absorption coefficient in Planck's black-body law)

Introduction	Kerr PBH Hawking radiation	Gamma ray constraints	BlackHawk	Conclusions
	0000			
Reduced temp	erature			

Hawking temperature for Kerr BHs

$$T(M, a^*) = \frac{1}{4\pi M} \left(\frac{\sqrt{1 - (a^*)^2}}{1 + \sqrt{1 - (a^*)^2}} \right) \stackrel{Schwarzschild}{\xrightarrow[a^*=0]{}} \frac{1}{8\pi M}$$

Introduction 000	Kerr PBH Hawking radiation 00●00	Gamma ray constraints ୦୦୦	BlackHawk ⊙⊙	Conclusions ⊖
Enhanced em	ission			

BH-particle spin coupling \Rightarrow superradiance effects (see e.g. Chandrasekhar & Detweiler papers in the 1970s) The Hawking radiation is enhanced for particles of spin 1 or 2.

Introduction	Kerr PBH Hawking radiation	Gamma ray constraints	Black Haw k	Conclusions
000	000●0	○○○	OO	O
Reduced lifetin	ne			

Evolution equations

$$\frac{\mathrm{d}M}{\mathrm{d}t} = -\frac{f(M, a^*)}{M^2} \qquad \qquad f \sim \int_E \text{ener.} \times \text{emiss.}$$
$$\frac{\mathrm{d}a^*}{\mathrm{d}t} = \frac{a^*(2f(M, a^*) - g(M, a^*))}{M^3} \qquad \qquad g \sim \int_E \text{ang. mom.} \times \text{emiss.}$$

Introduction 000	Kerr PBH Hawking radiation 0000●	Gamma ray constraints ୦୦୦	BlackHawk ⊙⊙	Conclusions ⊖
Extremal sp	in today?			

Could high spin BHs exist today? Can we get over Thorne's limit on the spin of rotating BHs from disk accretion?

→ Yes, with sufficiently massive and extremal PBHs

Introduction	Kerr PBH Hawking radiation	Gamma ray constraints ●○○	BlackHawk ⊙⊙	Conclusions ⊙
Isotropic ga	mma ray background (IGR	B) constraints		

Origin

Diffuse background +

- Active galactic nuclei
- Gamma ray bursts
- DM annihilation/decay?
- Hawking radiation?

Flux estimation for BHs

Arbey et al. [arXiv:1906.04750]

$$egin{split} I &\approx rac{1}{4\pi} E \int_{t_{
m C\,MB}}^{t_{
m t\,oday}}(1+z(t)) \ & imes \int_M \left[rac{{
m d}n}{{
m d}M} rac{{
m d}^2N}{{
m d}t{
m d}E}(M,(1+z(t))E)\,{
m d}M
ight]{
m d}t \end{split}$$

Introduction	Kerr PBH Hawking radiation	Gamma ray constraints	BlackHawk	Conclusions
000		○●○	OO	○
IGRB and Ke	rr PRHs monochromatic	mass distributions		

Main spin effects

- enhanced luminosity ⇒ stronger constraints
- reduced temperature \Rightarrow reduced emission energy \Rightarrow weaker constraints

Introduction	Kerr PBH Hawking radiation	Gamma ray constraints	Black Hawk	Conclusions
000		○○●	00	⊖
IGRB and Ker	r PBHs: Extension to broa	nd mass functions		

Main width effects

$M dn/dM \propto \exp(-\ln(M/M_*)^2/2\sigma^2)$

- \bullet broadening of the spectrum \Rightarrow stronger constraint
- broadening of the mass distribution \Rightarrow greater DM total density \Rightarrow weaker constraint

Introduction	Kerr PBH Hawking radiation	Gamma ray constraints	BlackHawk	Conclusions
000		୦୦୦	●O	O
BlackHawk				

Public C code computing Hawking radiation:

- Schwarzschild & Kerr PBHs
- primary spectra of all Standard Model fundamental particles
- secondary spectra of stable particles (hadronization with PYTHIA or HERWIG)
- extended mass functions
- time evolution of the PBHs

Download: http://blackhawk.hepforge.org

Manual: arXiv:1905.04268

Introduction	Kerr PBH Hawking radiation	Gamma ray constraints	BlackHawk	Conclusions		
000		୦୦୦	O●	⊖		
Ongoing work on Kerr PBHs						

- Big Bang Nucleosynthesis (see e.g. Sedel'nikov 1996, Kohri 2000)
- galactic gamma & X-rays (see e.g. Ballestros et al. [arXiv:1906.10113])
- galactic positrons (see e.g. Boudaud & Cirelli [arXiv:1807.03075], DeRocco & Graham [arXiv:1906.07740], Laha [arXiv:1906.09994])

Dwarf spheroidal (dSph) gamma ray constraints from FERMI-LAT

۰...

Introduction	Kerr PBH Hawking radiation	Gamma ray constraints	BlackHawk	Conclusions
000		000	OO	●
Conclusions				

Main results

- New public code BlackHawk to compute the Hawking radiation
- Study of the evolution of Kerr PBHs and constraints from IGRB
- Extension to more realistic broad PBH mass functions

Perspectives

- Closing the remaining PBH mass windows for all DM into PBHs?
- Primordial BH / Astrophysical BH discrimination using GW events?
- Other constraints...

Publications

- BlackHawk: http://blackhawk.hepforge.org [1905.04268]
- Any extremal black holes are primordial [1906.04196]
- Constraining primordial black hole masses with the isotropic gamma ray background [1906.04750]

Backup

Other constraints

Other constraints

Kerr metric

$$ds^{2} = \left(1 - \frac{2Mr}{\Sigma^{2}}\right)dt^{2} + \frac{4a^{*}M^{2}r\sin(\theta)^{2}}{\Sigma^{2}}dtd\phi - \frac{\Sigma^{2}}{\Delta}dr^{2}$$
$$-\Sigma^{2}d\theta^{2} - \left(r^{2} + (a^{*})^{2}M^{2} + \frac{2(a^{*})^{2}M^{3}r\sin(\theta)^{2}}{\Sigma^{2}}\right)\sin(\theta)^{2}d\phi^{2}$$

$$\Sigma \equiv r^2 + (a^*)^2 M^2 \cos(heta)^2$$
 and $\Delta \equiv r^2 - 2Mr + (a^*)^2 M^2$

Equations of motion in free space

Dirac:
$$(i\partial - \mu)\psi = 0$$
 (fermions)
Proca: $(\Box + \mu^2)\phi = 0$ (bosons)

 $\mu = \text{rest mass}$

Teukolsky radial equation

$$\frac{1}{\Delta^{s}}\frac{\mathrm{d}}{\mathrm{d}r}\left(\Delta^{s+1}\frac{\mathrm{d}R}{\mathrm{d}r}\right) + \left(\frac{K^{2}+2i\,s(r-M)K}{\Delta} - 4i\,s\text{Er} - \lambda_{slm} - \mu^{2}r^{2}\right)R = 0$$

R radial component of ψ/ϕ $K \equiv (r^2 + a^2)E + am$, s = spin, l = angular momentum and m = projection

Transformation into a Schödinger equation

Change $\psi/\phi \longrightarrow Z$ and $r \longrightarrow r^*$ (generalized Eddington - Finkelstein coordinate) (Chandrasekhar & Detweiler 1970s)

$$\frac{\mathrm{d}^2 Z}{\mathrm{d}r^{*2}} + (E^2 - V(r^*))Z = 0 \tag{1}$$

Solved with purely outgoing solution $Z \xrightarrow[r^* \to -\infty]{} e^{-i Er^*}$ Transmission coefficient $\Gamma \equiv |Z_{out}^{+\infty}/Z_{out}^{horizon}|^2$

Kerr Hawking radiation equations

Chandrasekhar potentials

$$\begin{split} V_{\mathbf{0}}(r) &= \frac{\Delta}{\rho^4} \left(\lambda_{\mathbf{0} \ lm} + \frac{\Delta + 2r(r-M)}{\rho^2} - \frac{3r^2\Delta}{\rho^4} \right) \\ V_{\mathbf{1}/2,\pm}(r) &= (\lambda_{\mathbf{1}/2 \ lm} + 1) \frac{\Delta}{\rho^4} \mp \frac{\sqrt{(\lambda_{\mathbf{1}/2,l,m} + 1)\Delta}}{\rho^4} \left((r-M) - \frac{2r\Delta}{\rho^2} \right) \\ V_{\mathbf{1},\pm}(r) &= \frac{\Delta}{\rho^4} \left((\lambda_{\mathbf{1} \ lm} + 2) - \alpha^2 \frac{\Delta}{\rho^4} \mp i\alpha\rho^2 \frac{\mathrm{d}}{\mathrm{d}r} \left(\frac{\Delta}{\rho^4} \right) \right) \\ V_{\mathbf{2}}(r) &= \frac{\Delta}{\rho^8} \left(q - \frac{\rho^2}{(q-\beta\Delta)^2} \left((q-\beta\Delta) \left(\rho^2 \Delta q^{\prime\prime} - 2\rho^2 q - 2r(q^\prime \Delta - q\Delta^\prime) \right) \right) \\ &+ \rho^2 (\kappa \rho^2 - q^\prime + \beta\Delta^\prime) (q^\prime \Delta - q\Delta^\prime) \right) \end{split}$$

 $\rho^{\rm 2} \equiv {\it r}^{\rm 2} + \alpha^{\rm 2} ~{\rm and}~ \alpha^{\rm 2} \equiv {\it a}^{\rm 2} + {\it am}/{\it E}$

$$q(r) = \nu \rho^{4} + 3\rho^{2}(r^{2} - a^{2}) - 3r^{2}\Delta$$

$$q'(r) = r\left((4\nu + 6)\rho^{2} - 6(r^{2} - 3Mr + 2a^{2})\right)$$

$$q''(r) = (4\nu + 6)\rho^{2} + 8\nu r^{2} - 6r^{2} + 36Mr - 12a^{2}$$

$$\beta_{\pm} = \pm 3\alpha^{2}$$

$$\kappa_{\pm} = \pm \sqrt{36M^{2} - 2\nu(\alpha^{2}(5\nu + 6) - 12a^{2}) + 2\beta\nu(\nu + 2)}$$

Luminosities for all spins

Page parameters (Page 1976)

$$f(M, a^*) \equiv -M^2 \frac{\mathrm{d}M}{\mathrm{d}t} = M^2 \int_0^{+\infty} \sum_{\mathrm{dof.}} \frac{E}{2\pi} \frac{\Gamma(E, M, a^*)}{e^{E'/T} \pm 1} \mathrm{d}E$$
$$g(M, a^*) \equiv -\frac{M}{a^*} \frac{\mathrm{d}J}{\mathrm{d}t} = \frac{M}{a^*} \int_0^{+\infty} \sum_{\mathrm{dof.}} \frac{m}{2\pi} \frac{\Gamma(E, M, a^*)}{e^{E'/T} \pm 1} \mathrm{d}E$$

Evolution equations (Page 1976)

$$\frac{\mathrm{d}M}{\mathrm{d}t} = -\frac{f(M, a^*)}{M^2}$$
$$\frac{\mathrm{d}a^*}{\mathrm{d}t} = \frac{a^*(2f(M, a^*) - g(M, a^*))}{M^3}$$

Reduced lifetime

Decrease of BH lifetime τ for increasing initial spin a_i^* , compared to the Schwarzschild

Log-normal distributions

Definition

$$\frac{\mathrm{d}n}{\mathrm{d}M} = \frac{A}{\sqrt{2\pi}\sigma M} \exp\left(-\frac{(\log(M/M_*))^2}{2\sigma^2}\right)$$

 $M^* = \text{central mass}, \sigma = \text{width (dimensionless)}$

Log-normal distributions (normalized to unity, $M^* = 3 \times 10^{15}$ g)

