UCL

Can Neutrino Oscillations Probe New Lepton Number Violating Physics?

Patrick D. Bolton¹, Frank F. Deppisch¹

PASCOS 2019 XXV International Symposium 1st July 2019

¹Department of Physics and Astronomy University College London Gower Street, London WC1E 6BT

For paper see: Phys. Rev. D 99, 115011 [arXiv:1903.06557]

Retrospective

'Neutrino-Antineutrino' Oscillations

- $\circ\,$ Gell-Mann and Pais: ${\cal K}^0-\bar{\cal K}^0$ oscillations (1955)
- ~ QCD-produced (K^0, \bar{K}^0) superpositions of mass eigenstates (K_1^0, K_2^0)
- $\sim~$ Strangeness violating weak interactions: ${\cal K}^0 \rightleftarrows ar{{\cal K}}^0$

- \circ Pontecorvo: $u ar{
 u}$ oscillations (1957, before u_{μ})
- \sim Introduce ν_R : Dirac + Majorana mass term
- \sim Weak-produced ν_L superpositions of Majorana mass eigenstates (ν_1, ν_2)
- $\sim~L$ violating (LNV) mass: $\nu_L \rightleftarrows \nu_R^{\ensuremath{\mathcal{C}}}$
- $\sim \nu_R$ sterile: Reines and Cowan observe deficit ν_R interact: rumoured Davis signal

Current Standing

1) Global oscillation fits: Δm^2_{21} , $|\Delta m^2_{31}|$, $heta_{12}$, $heta_{23}$ and $heta_{13}$

- \Rightarrow Strong preference for CP violating phase $\delta \in [\pi, 2\pi]$
- \Rightarrow 3 σ support for normal ordering (NO)

2) Massive ν kinematics: KATRIN (m_0) and cosmology $(\sum m_{
u})$

- (3) Probes sensitive to L:
- $\Rightarrow 0\nu\beta\beta$
- $\Rightarrow \ {\sf Meson \ decays}$
- \Rightarrow $\mu^- e^+$ conversion in nuclei

Question: Could an *oscillation* process sensitive to charge (therefore L) be a probe of LNV physics?

Framework

- In QFT, rate of oscillation process: $\Gamma_{\nu_{\alpha} \to \nu_{\beta}} \propto \left| \mathcal{A}_{\nu_{\alpha} \to \nu_{\beta}}(T, \mathbf{L}) \right|^2 = \left| \sum_{i} \mathcal{A}_{i} \right|^2$
- \Rightarrow The S-matrix element written as sum over propagating mass eigenestates ν_i :

$$\mathcal{A}_i = \int rac{d^4q}{(2\pi)^4} \ \mathcal{M}_D \ rac{q+m_i}{q^2-m_i^2+i\epsilon} \ \mathcal{M}_P \ e^{-iq\cdot(x_D-x_P)}$$

• SM (V – A) currents at production and detection, require $\mathcal{L}_{P} = \mathcal{L}_{D}^{\dagger}$. Then for negative helicity ν

$$\Rightarrow \mathcal{A}_{i}^{LR} \propto U_{\alpha i}^{*}U_{\beta i}P_{L}(\not q + m_{i})P_{R} \propto U_{\alpha i}^{*}U_{\beta i}(2E_{q})$$

Oscillations of Majorana Fermions in QFT

- If ν Majorana, possible to show that $\mathcal{L}_P = \mathcal{L}_D$ gives a finite \mathcal{A}_i using Majorana Feynman rules
- $\circ~$ For both positive and negative helicity ν

$$\Rightarrow \mathcal{A}_{i}^{RR} \propto U_{\alpha i}^{*} U_{\beta i}^{*} P_{R} (\not q + m_{i}) P_{R} \propto U_{\alpha i}^{*} U_{\beta i}^{*} m_{i}$$

Consequences:

- 1. Same-sign ℓ_{α} , ℓ_{β} at production and detection, $|\Delta L| = 2$
- 2. $\mathcal{A}_{i}^{RR} \propto U_{\alpha i}^{*} U_{\beta i}^{*}$, sensitive to Majorana phases
- 3. $\mathcal{A}_{i}^{RR} \propto \frac{m_{i}}{(2E_{n})} \mathcal{A}_{i}^{LR}$, highly suppressed

What would be the effect of a non (V - A) current at production or detection?

• Introduce a four-fermion non-standard interaction (NSI) term:

$$\mathcal{L}_{P,D} = -\frac{G_F}{\sqrt{2}} \sum_{\rho,\sigma} \varepsilon^{(\rho,\sigma)} \left(\bar{\nu} \ \Gamma_{\rho} \ \ell \right) \left(\bar{d} \ \Gamma_{\sigma} \ u \right) + \text{h.c.}$$

•
$$\Gamma_{\rho}, \Gamma_{\sigma} \Rightarrow$$
 Any allowed combination of *S*, *V*, *T*, *P*, *A*
• Define $\varepsilon_{\beta\alpha}^{(\rho,\sigma)} \equiv \sum_{i} U_{\alpha i} \gamma_{\beta i}^{(\rho,\sigma)} \Rightarrow \varepsilon$ in 'flavour' basis, γ in 'mass' basis
• $\Gamma_{\rho} \propto P_L (P_R) \Rightarrow$ LNC (LNV)

⇒ Focus on combination $\varepsilon^{\text{NSI}} \equiv \varepsilon^{(V+A, V\pm A)}$ ⇒ V + A leptonic current at detection lifts the $\frac{m_i^2}{(2E_i)^2}$ suppression $\circ\,$ Equivalent to EFT picture with d=6 operators constructed from SM fields below EW scale

$\Delta L = 0 + { m H.c.}$		$ \Delta L =2+ ext{H.c.}$		
$\mathcal{O}_{ u edu}^{V,LL}$	$\left(\overline{\nu}_{Lp}\gamma^{\mu}e_{Lr} ight)\left(\overline{d}_{Ls}\gamma_{\mu}u_{Lt} ight)$	$\mathcal{O}^{S,LL}_{\nu edu}$	$\left(\nu_{Lp}^T C e_{Lr}\right) \left(\overline{d}_{Rs} u_{Lt}\right)$	
$\mathcal{O}_{ u edu}^{V,LR}$	$\left(\overline{\nu}_{Lp}\gamma^{\mu}e_{Lr}\right)\left(\overline{d}_{Rs}\gamma_{\mu}u_{Rt}\right)$	$\mathcal{O}_{\nu edu}^{T,LL}$	$\left(\nu_{Lp}^T C \sigma^{\mu\nu} e_{Lr}\right) \left(\overline{d}_{Rs} \sigma_{\mu\nu} u_{Lt}\right)$	
$\mathcal{O}^{S,RR}_{ u edu}$	$\left(\overline{\nu}_{Lp}e_{Rr}\right)\left(\overline{d}_{Ls}u_{Rt}\right)$	$\mathcal{O}^{S,LR}_{ u edu}$	$\left(\nu_{Lp}^T C e_{Lr}\right) \left(\overline{d}_{Ls} u_{Rt}\right)$	
$\mathcal{O}_{ u edu}^{T,RR}$	$\left(\overline{\nu}_{Lp}\sigma^{\mu\nu}e_{Rr}\right)\left(\overline{d}_{Ls}\sigma_{\mu\nu}u_{Rt}\right)$	$\mathcal{O}_{ u edu}^{V,RL}$	$\left(\nu_{Lp}^T C \gamma^\mu e_{Rr}\right) \left(\overline{d}_{Ls} \gamma_\mu u_{Lt}\right)$	
$\mathcal{O}^{S,RL}_{ u edu}$	$\left(\overline{\nu}_{Lp}e_{Rr}\right)\left(\overline{d}_{Rs}u_{Lt}\right)$	$\mathcal{O}_{\nu edu}^{V,RR}$	$\left(\nu_{Lp}^T C \gamma^\mu e_{Rr}\right) \left(\overline{d}_{Rs} \gamma_\mu u_{Rt}\right)$	

[Jenkins, Manohar, Stoffer '18]

$$L^{i}\bar{e}^{c}\bar{u}^{c}d^{c}H^{j}\epsilon_{ij} \longrightarrow \frac{v}{\sqrt{2}}(\nu_{L}^{T}C\gamma^{\mu}\ell_{R})(\bar{d}_{L}\gamma_{\mu}u_{R})$$

 $\circ~$ In the QFT framework, NSI oscillation probability for ' $\nu_{\alpha} \rightarrow \bar{\nu}_{\beta}$ ':

$$P_{\nu_{\alpha} \to \overline{\nu}_{\beta}}^{\mathrm{NSI}} = N_{\alpha} \left| \sum_{i}^{3} U_{\alpha i}^{*} \gamma_{\beta i} e^{-i \frac{m_{i}^{2}}{2E_{q}} L} \right|^{2} \propto \sum_{\lambda} F_{\lambda}^{\{\alpha\}} \left(L, E_{q} \right) \varepsilon_{\beta\lambda}^{2} + \sum_{\lambda < \lambda'} G_{\lambda\lambda'}^{\{\alpha\}} \left(L, E_{q} \right) \varepsilon_{\beta\lambda} \varepsilon_{\beta\lambda'}$$

$$\Rightarrow \lambda, \lambda' = (e, \mu, \tau)$$

$$\Rightarrow N_{\alpha} \text{ a normalisation factor ensuring } \sum_{\beta} \left(P_{\nu_{\alpha} \rightarrow \nu_{\beta}} + P_{\nu_{\alpha} \rightarrow \overline{\nu}_{\beta}}^{\text{NSI}} \right) = 1$$

$$\Rightarrow F_{\lambda}^{\{\alpha\}} (L, E_{\mathbf{q}}) = \sum_{i} |U_{\alpha i}|^{2} |U_{\lambda i}|^{2} + 2 \operatorname{Re} \left\{ \sum_{i < j} U_{\alpha i}^{*} U_{\alpha j} U_{\lambda i}^{*} U_{\lambda j} e^{-i \frac{\Delta m_{ij}^{2}}{2E_{\mathbf{q}}} L} \right\}$$

$$G_{\lambda \lambda'}^{\{\alpha\}} (L, E_{\mathbf{q}}) = 2 \operatorname{Re} \left\{ \sum_{i} |U_{\alpha i}|^{2} U_{\lambda i}^{*} U_{\lambda' i} \right\} + 2 \operatorname{Re} \left\{ \sum_{i < j} U_{\alpha i}^{*} U_{\alpha j} \left(U_{\lambda i}^{*} U_{\lambda' j} + U_{\lambda' i}^{*} U_{\lambda j} \right) e^{-i \frac{\Delta m_{ij}^{2}}{2E_{\mathbf{q}}} L} \right\}$$

Non-Standard Oscillation Formula II

$$\circ \ P^{\rm NSI}_{\nu_{\alpha} \to \overline{\nu}_{\beta}} \ {\rm sensitive \ to} \ \varepsilon_{\beta e}, \ \varepsilon_{\beta \mu}, \ \varepsilon_{\beta \tau}$$

 $\Rightarrow\,$ In this framework even for zero distance, $F_{\lambda}^{(\alpha)}\neq 0$ for $\lambda\neq \alpha$

$$F_{\lambda}^{\{\alpha\}}(L=0) = \sum_{i} |U_{\alpha i}|^{2} |U_{\lambda i}|^{2} , \quad G_{\lambda \lambda'}^{\{\alpha\}}(L=0) = 2 \operatorname{Re}\left\{\sum_{i} |U_{\alpha i}|^{2} |U_{\lambda i}|^{2} |U_{\lambda' i}|^{2}\right\}$$

$$\varepsilon^{\text{NSI}} = \begin{pmatrix} \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ \varepsilon_{\mu e} & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ \varepsilon_{\tau e} & \varepsilon_{\tau\mu} & \varepsilon_{\tau\tau} \end{pmatrix}$$

- $\nu_{\alpha} \rightarrow \bar{\nu}_{e}$ or LNV process with ingoing/outgoing $\ell_{\alpha}^{\pm} e^{\pm} (0\nu\beta\beta, \mu^{-} e^{+})$
- $\nu_{\alpha} \rightarrow \bar{\nu}_{\mu}$ or LNV process with ingoing/outgoing $\ell^{\pm}_{\alpha}\mu^{\pm}$ (K⁺ $\rightarrow \pi^{-}\mu^{+}\mu^{+}, \mu^{-} e^{+}$)
- LNV process with ingoing/outgoing $\ell^\pm_\alpha \tau^\pm$ $(\tau^- \to \mu^+ \pi^- \pi^-)$

Oscillation Analysis and Results

MINOS

- \circ MINOS experiment (2005–2016): magnetised far detector determined ℓ^\pm_β from track curvature
- Measured the ratio

$$R_{\mu\mu} \equiv \frac{N_{\mu^+}}{N_{\mu^-}} = \frac{\Gamma_{\nu_{\mu} \to \overline{\nu}_{\mu}} + \Gamma_{\overline{\nu}_{\mu} \to \overline{\nu}_{\mu}}}{\Gamma_{\nu_{\mu} \to \nu_{\mu}} + \Gamma_{\overline{\nu}_{\mu} \to \nu_{\mu}}}$$

 $\Rightarrow \text{ Rate for NSI process: } \Gamma_{\nu_{\mu} \to \overline{\nu}_{\mu}} = \int dE \ \frac{d\Gamma_{\nu_{\mu}}}{dE} \cdot P_{\nu_{\mu} \to \overline{\nu}_{\mu}}^{\rm NSI} \cdot \sigma_{\overline{\nu}_{\mu}}$

 $\circ~$ Upper bound of ${\it S}_{\mu\mu}=({\it R}_{\mu\mu}-{\it background})<0.026\Rightarrow$ Upper bound on $\varepsilon_{\mu\lambda}$

Plan:

- 1. $|\Delta m^2_{31}| \gg \Delta m^2_{21}$, so use 2ν approximation: $\lambda = \mu, \tau$ (backup)
- 2. Generalise to 3ν case: $\lambda = e, \mu, \tau$

MINOS - Three Neutrino Phase Dependence

KamLAND

- \circ KamLAND experiment: initially confirmed the LMA solution to solar ν problem
- \Rightarrow Recently searched for $\bar{
 u}_e$ descendant from ⁸B solar $u_e \Rightarrow$ NSI at detection
- $\circ~$ Assume ν_e oscillate to an incoherent mixture of (ν_e,ν_μ,ν_τ)
- \Rightarrow No dependence on (α_2, α_3) and

$$P_{\nu_e o ar{
u}_e}^{\mathrm{NSI}} o \sum_{\lambda} P_{\nu_e o
u_{\lambda}}^{\mathrm{eff}} |\varepsilon_{e\lambda}|^2$$

 $\Rightarrow~{\cal P}_{\nu_e\to\nu_\lambda}^{\rm eff}$ the adiabatic transition probability (valid for $E_{\nu}\gtrsim$ 2 MeV in LMA solution)

 $\circ~$ KamLAND gives an upper bound $\mathit{S_{ee}} = (\mathit{R_{ee}} - \mathsf{background}) < 2.8 \cdot 10^{-4}$

 $ert arepsilon_{ee} ert \lesssim 0.017 \;, \; ert arepsilon_{e\mu} ert \lesssim 0.017 \;, \; ert arepsilon_{e au} ert \lesssim 0.015$

Conventional LNV Probes

 \circ (V + A) leptonic current \Rightarrow In our framework the 0uetaeta half-life becomes

$$\left[T_{1/2}^{0\nu\beta\beta}\right]^{-1} = \frac{c_{mm}}{m_e^2} \left|\sum_{i}^{3} U_{ei}^2 m_i\right|^2 + C_{\gamma\gamma} \left|\sum_{i}^{3} U_{ei}\gamma_{ei}^*\right|^2 + C_{m\gamma} \operatorname{Re}\left\{\sum_{i,j}^{3} U_{ei}^2 m_i U_{ej}^* \gamma_{ej}\right\}$$

 C_{mm} , $C_{\gamma\gamma}$, $C_{m\gamma}$ products of NMEs and electron phase space integrals (calculated Muto et. al '89)

• Use
$$T_{1/2}^{0\nu\beta\beta}$$
 (⁷⁶Ge) > 5.3 × 10²⁵ y (**GERDA-II**)
• Take NO: $m_1 = 0$ eV, $m_2 = \sqrt{\Delta m_{21}^2}, m_3 = \sqrt{\Delta m_{31}^2}$

 $\Rightarrow \text{ Upper bounds on } |\varepsilon_{ee}| \text{ and also } |\varepsilon_{e\mu}|, |\varepsilon_{e\tau}|$ $(\text{zero-distance}) \text{ as function of } (\alpha_2, \alpha_3)$

Neutrinoless Double Beta Decay - Phase Dependence

14

Muon to Positron Conversion in Nuclei

- **LFNV** $\mu^- e^+$ conversion process (proposed by Pontecorvo) \Rightarrow Probe of LNV in the μe sector
- ⇒ Future LFV searches (PRISM/Mu2e) can search for his channel
- \Rightarrow More sensitive than $K^+ o \pi^- \mu^+ \mu^+$

$$R_{\mu e} \approx \left|\sum_{i} \left(U_{ei}^* \gamma_{\mu i} + U_{\mu i}^* \gamma_{ei} \right) \right|^2 \frac{G_F^2}{2} \frac{Q^6}{q^2} \lesssim 10^{-11} \quad \text{(SINDRUM-II)}$$

(qpprox 100 MeV, Qpprox 15.6 MeV)

 $\circ~$ Constraints are $~|arepsilon_{\mu\lambda}|\lesssim {\cal O}(10^4)~$, only improving to ${\cal O}(10^2)$ in future

 \Rightarrow Implied effective operator scale $\Lambda \sim \frac{1}{\sqrt{|arepsilon_{\mu\lambda}|G_F}} \sim 3$ GeV (EFT barely valid)

NSI coefficient	Previous upper bound	Process	LBL upper bound	LBL experiment
$ \varepsilon_{ee} $	$2.1\times 10^{-9} - 6.3\times 10^{-9}$		0.017	
$ \varepsilon_{e\mu} $	$2.9 \times 10^{-9} - \infty$	$0\nu\beta\beta$ (⁷⁶ Ge)	0.017	KamLAND
$ \varepsilon_{e\tau} $	$2.6 imes 10^{-9} - \infty$		0.015	
$ \varepsilon_{\mu e} $	$\sim 4\times 10^3 - 1\times 10^4$		0.22 - 3.47	
$ arepsilon_{\mu\mu} $	$\sim 6 \times 10^3 - \infty$	$\mu^ e^+$	0.16 - 0.63	MINOS
$ \varepsilon_{\mu\tau} $	$\sim 5 \times 10^3 - \infty$		0.16 - 0.71	

o Above: Upper bounds on LNV NSI coefficients

- \Rightarrow 0 $\nu\beta\beta$ provides most stringent *e*-sector constraints
- \Rightarrow For finely-tuned (α_2, α_3) values KamLAND more constraining for $\varepsilon_{e\mu}$, $\varepsilon_{e\tau}$
- \Rightarrow Conversely, **MINOS** provides most stringent μ -sector constraints
- ⇒ Most constraining microscopic process $(\mu^- e^+ \text{ rather than } K^+ \rightarrow \pi^- \mu^+ \mu^+)$ is $\mathcal{O}(10^3)$ worse and stretches EFT approach

Comments and Future Work I

Assumptions

- $\circ~$ Most recent global fit values of oscillation parameters and $\delta~$ in NO
- o Idealised picture of oscillations in QFT
- Simplistic treatment of solar neutrinos

Future Work

- Let oscillation parameters vary along with $arepsilon^{
 m NSI}$
- Technical details of LNV NSI impact on matter oscillations
- Constraints on $\varepsilon^{\rm NSI} \Rightarrow$ constraints on given model, e.g. sterile neutrinos

Conclusions

- An oscillation experiment ND or FD sensitive to the charge of outgoing ℓ_{β}^{\pm} \Rightarrow probe of LNV physics
- E.g. (V + A) leptonic current at detection aleviates the $\left(\frac{m_i}{2E_q}\right)^2$ suppression of a Majorana ν
- ⇒ In the associated low energy EFT a modified mixing $U_{\alpha i} \rightarrow \gamma_{\alpha i}$ results in a modified oscillation probability $P_{\nu_{\alpha} \rightarrow \bar{\nu}_{\beta}}^{NSI}$
- \Rightarrow Oscillations a testing ground for the off-diagonal flavour structure of $arepsilon^{
 m NSI}$
- KamLAND only provides better constraints in the *e*-sector than $0\nu\beta\beta$ for finely-tuned (α_2, α_3) . MINOS, however, provides the most stringent μ -sector constraints

Backup

MINOS - Two Neutrino Results

20

• Allowed regions in $(\varepsilon_{\mu\mu}, \varepsilon_{\mu\tau})$ for different baselines:

Comments and Future Work II

