Dark Matter from a vector field in the fundamental representation of $S U(2)_{L}$

Felipe Rojas Abatte

Universidad Técnica Federico Santa María - Chile Southampton University - England

$$
\text { July 1, } 2019
$$

XXV International Symposium PASCOS 2019

Southampton

Out line

(1) Description and main aspects of the model
(2) Theoretical and physical Constraints
(3) Description of the parameter space
(4) Dark Matter signatures at LHC
(5) Conclusions

Dark Matter from a vector field in the fundamental representation of $S U(2)_{L}$

Bastian Díaz Sáes - Alfonso R. Zerwekh - Felipe Rojas-Abatte

- Phys.Rev. D99 (2019) no.7, 075026 , arXiv:1810.06375 [hep-ph]

Main aspects of the model

We considered a simplified DM model in which we introduce a new extra vector doublet V_{μ} transforming with the same quantum numbers as the Higgs field under the gauge symmetry group $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

$$
V_{\mu}=\binom{V_{\mu}^{+}}{V_{\mu}^{\circ}}=\binom{V_{\mu}^{+}}{\frac{V_{\mu}^{1}+i V_{\mu}^{2}}{\sqrt{2}}} \sim(1,2,1 / 2)
$$

The most general Lagrangian respecting the SM gauge symmetry containing this new vector with operators up to dimension four is

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{2}\left(D_{\mu} V_{\nu}-D_{\nu} V_{\mu}\right)^{\dagger}\left(D^{\mu} V^{\nu}-D^{\nu} V^{\mu}\right)+M_{\nu}^{2} V_{\mu}^{\dagger} V^{\mu}-\lambda_{2}\left(\phi^{\dagger} \phi\right)\left(V_{\mu}^{\dagger} V^{\mu}\right) \\
& -\lambda_{3}\left(\phi^{\dagger} V_{\mu}\right)\left(V^{\mu \dagger} \phi\right)-\frac{\lambda_{4}}{2}\left[\left(\phi^{\dagger} V_{\mu}\right)\left(\phi^{\dagger} V^{\mu}\right)+\left(V^{\mu \dagger} \phi\right)\left(V_{\mu}^{\dagger} \phi\right)\right] \\
& -\alpha_{1}\left[\phi^{\dagger}\left(D_{\mu} V^{\mu}\right)+\left(D_{\mu} V^{\mu}\right)^{\dagger} \phi\right]-\alpha_{2}\left(V_{\mu}^{\dagger} V^{\mu}\right)\left(V_{\nu}^{\dagger} V^{\nu}\right)-\alpha_{3}\left(V_{\mu}^{\dagger} V^{\nu}\right)\left(V_{\nu}^{\dagger} V^{\mu}\right) \\
& +i g \kappa_{1} V_{\mu}^{\dagger} W^{\mu \nu} V_{\nu}+i \frac{g^{\prime}}{2} \kappa_{2} V_{\mu}^{\dagger} B^{\mu \nu} V_{\nu}
\end{aligned}
$$

where
$D_{\mu} V_{\nu}=\partial_{\mu} V_{\nu}+i \frac{g}{2} W_{\mu}^{a} \sigma^{a} V_{\nu}+\frac{i}{2} B_{\mu} V_{\nu}$

Not possible to couple V to standard fermions without introducing exotic vector-like, fermions

Main aspects of the model

We considered a simplified DM model in which we introduce a new extra vector doublet V_{μ} transforming with the same quantum numbers as the Higgs field under the gauge symmetry group $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

$$
V_{\mu}=\binom{V_{\mu}^{+}}{V_{\mu}^{o}}=\binom{V_{\mu}^{+}}{\frac{V_{\mu}^{1}+i V_{\mu}^{2}}{\sqrt{2}}} \sim(1,2,1 / 2)
$$

The most general Lagrangian respecting the SM gauge symmetry containing this new vector with operators up to dimension four is

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{2}\left(D_{\mu} V_{\nu}-D_{\nu} V_{\mu}\right)^{\dagger}\left(D^{\mu} V^{\nu}-D^{\nu} V^{\mu}\right)+M_{V}^{2} V_{\mu}^{\dagger} V^{\mu}-\lambda_{2}\left(\phi^{\dagger} \phi\right)\left(V_{\mu}^{\dagger} V^{\mu}\right) \\
& -\lambda_{3}\left(\phi^{\dagger} V_{\mu}\right)\left(V^{\mu \dagger} \phi\right)-\frac{\lambda_{4}}{2}\left[\left(\phi^{\dagger} V_{\mu}\right)\left(\phi^{\dagger} V^{\mu}\right)+\left(V^{\mu \dagger} \phi\right)\left(V_{\mu}^{\dagger} \phi\right)\right] \\
& -\alpha_{1}\left[\phi^{\dagger}\left(D_{\mu} V^{\mu}\right)+\left(D_{\mu} V^{\mu}\right)^{\dagger} \phi\right]-\alpha_{2}\left(V_{\mu}^{\dagger} V^{\mu}\right)\left(V_{\nu}^{\dagger} V^{\nu}\right)-\alpha_{3}\left(V_{\mu}^{\dagger} V^{\nu}\right)\left(V_{\nu}^{\dagger} V^{\mu}\right) \\
& +i g \kappa_{1} V_{\mu}^{\dagger} W^{\mu \nu} V_{\nu}+i \frac{g^{\prime}}{2} \kappa_{2} V_{\mu}^{\dagger} B^{\mu \nu} V_{\nu}
\end{aligned}
$$

where

$$
D_{\mu} V_{\nu}=\partial_{\mu} V_{\nu}+i \frac{g}{2} W_{\mu}^{a} \sigma^{a} V_{\nu}+\frac{i}{2} B_{\mu} V_{\nu}
$$

$$
\text { For simplicity } \kappa_{1}=\kappa_{2}=1
$$

Main aspects of the model

We considered a simplified DM model in which we introduce a new extra vector doublet V_{μ} transforming with the same quantum numbers as the Higgs field under the gauge symmetry group $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

$$
V_{\mu}=\binom{V_{\mu}^{+}}{V_{\mu}^{o}}=\binom{V_{\mu}^{+}}{\frac{V_{\mu}^{1}+i V_{\mu}^{2}}{\sqrt{2}}} \sim(1,2,1 / 2)
$$

The most general Lagrangian respecting the SM gauge symmetry containing this new vector with operators up to dimension four is

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{2}\left(D_{\mu} V_{\nu}-D_{\nu} V_{\mu}\right)^{\dagger}\left(D^{\mu} V^{\nu}-D^{\nu} V^{\mu}\right)+M_{V}^{2} V_{\mu}^{\dagger} V^{\mu}-\lambda_{2}\left(\phi^{\dagger} \phi\right)\left(V_{\mu}^{\dagger} V^{\mu}\right) \\
& -\lambda_{3}\left(\phi^{\dagger} V_{\mu}\right)\left(V^{\mu \dagger} \phi\right)-\frac{\lambda_{4}}{2}\left[\left(\phi^{\dagger} V_{\mu}\right)\left(\phi^{\dagger} V^{\mu}\right)+\left(V^{\mu \dagger} \phi\right)\left(V_{\mu}^{\dagger} \phi\right)\right] \\
& -\alpha_{1}\left[\phi^{\dagger}\left(D_{\mu} V^{\mu}\right)+\left(D_{\mu} V^{\mu}\right)^{\dagger} \phi\right]-\alpha_{2}\left(V_{\mu}^{\dagger} V^{\mu}\right)\left(V_{\nu}^{\dagger} V^{\nu}\right)-\alpha_{3}\left(V_{\mu}^{\dagger} V^{\nu}\right)\left(V_{\nu}^{\dagger} V^{\mu}\right) \\
& +i g \kappa_{1} V_{\mu}^{\dagger} W^{\mu \nu} V_{\nu}+i \frac{g^{\prime}}{2} \kappa_{2} V_{\mu}^{\dagger} B^{\mu \nu} V_{\nu}
\end{aligned}
$$

where

$$
D_{\mu} V_{\nu}=\partial_{\mu} V_{\nu}+i \frac{g}{2} W_{\mu}^{a} \sigma^{a} V_{\nu}+\frac{i}{2} B_{\mu} V_{\nu}
$$

$$
\text { If } \alpha_{1}=0 \text { appears a } Z_{2} \text { symmetry }
$$

Main aspects of the model

In the limit when $\alpha_{1}=0$ the model acquires an additional Z_{2} discrete symmetry allowing the stability of the lightest odd particle (LOP). The Lagrangian is reduce to

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{2}\left(D_{\mu} V_{\nu}-D_{\nu} V_{\mu}\right)^{\dagger}\left(D^{\mu} V^{\nu}-D^{\nu} V^{\mu}\right)+M_{V}^{2} V_{\mu}^{\dagger} V^{\mu} \\
& -\lambda_{2}\left(\phi^{\dagger} \phi\right)\left(V_{\mu}^{\dagger} V^{\mu}\right)-\lambda_{3}\left(\phi^{\dagger} V_{\mu}\right)\left(V^{\mu \dagger} \phi\right) \\
& -\frac{\lambda_{4}}{2}\left[\left(\phi^{\dagger} V_{\mu}\right)\left(\phi^{\dagger} V^{\mu}\right)+\left(V^{\mu \dagger} \phi\right)\left(V_{\mu}^{\dagger} \phi\right)\right] \\
& -\alpha_{2}\left(V_{\mu}^{\dagger} V^{\mu}\right)\left(V_{\nu}^{\dagger} V^{\nu}\right)-\alpha_{3}\left(V_{\mu}^{\dagger} V^{\nu}\right)\left(V_{\nu}^{\dagger} V^{\mu}\right) \\
& +i g V_{\mu}^{\dagger} W^{\mu \nu} V_{\nu}+i \frac{g^{\prime}}{2} V_{\mu}^{\dagger} B^{\mu \nu} V_{\nu}
\end{aligned}
$$

The model contain 6 free parameters: $M_{V}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \alpha_{2}$ and α_{3}. After EWSB, the tree level mass spectrum of the new sector is

$$
\begin{aligned}
M_{V \pm}^{2} & =\frac{1}{2}\left[2 M_{V}^{2}-v^{2} \lambda_{2}\right] \\
M_{V_{1}}^{2} & =\frac{1}{2}\left[2 M_{V}^{2}-v^{2}\left(\lambda_{2}+\lambda_{3}+\lambda_{4}\right)\right] \\
M_{V_{2}}^{2} & =\frac{1}{2}\left[2 M_{V}^{2}-v^{2}\left(\lambda_{2}+\lambda_{3}-\lambda_{4}\right)\right]
\end{aligned}
$$

Main aspects of the model

In the limit when $\alpha_{1}=0$ the model acquires an additional Z_{2} discrete symmetry allowing the stability of the lightest odd particle (LOP). The Lagrangian is reduce to

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{2}\left(D_{\mu} V_{\nu}-D_{\nu} V_{\mu}\right)^{\dagger}\left(D^{\mu} V^{\nu}-D^{\nu} V^{\mu}\right)+M_{V}^{2} V_{\mu}^{\dagger} V^{\mu} \\
& -\lambda_{2}\left(\phi^{\dagger} \phi\right)\left(V_{\mu}^{\dagger} V^{\mu}\right)-\lambda_{3}\left(\phi^{\dagger} V_{\mu}\right)\left(V^{\mu \dagger} \phi\right) \\
& -\frac{\lambda_{4}}{2}\left[\left(\phi^{\dagger} V_{\mu}\right)\left(\phi^{\dagger} V^{\mu}\right)+\left(V^{\mu \dagger} \phi\right)\left(V_{\mu}^{\dagger} \phi\right)\right] \\
& -\alpha_{2}\left(V_{\mu}^{\dagger} V^{\mu}\right)\left(V_{\nu}^{\dagger} V^{\nu}\right)-\alpha_{3}\left(V_{\mu}^{\dagger} V^{\nu}\right)\left(V_{\nu}^{\dagger} V^{\mu}\right) \\
& +i g V_{\mu}^{\dagger} W^{\mu \nu} V_{\nu}+i \frac{g^{\prime}}{2} V_{\mu}^{\dagger} B^{\mu \nu} V_{\nu}
\end{aligned}
$$

The model contain 6 free parameters: $M_{V}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \alpha_{2}$ and α_{3}. After EWSB, the tree level mass spectrum of the new sector is

$$
\begin{aligned}
M_{V \pm}^{2} & =\frac{1}{2}\left[2 M_{V}^{2}-v^{2} \lambda_{2}\right] \\
M_{V_{1}}^{2} & =\frac{1}{2}\left[2 M_{V}^{2}-v^{2}\left(\lambda_{2}+\lambda_{3}+\lambda_{4}\right)\right] \\
M_{V_{2}}^{2} & =\frac{1}{2}\left[2 M_{V}^{2}-v^{2}\left(\lambda_{2}+\lambda_{3}-\lambda_{4}\right)\right]
\end{aligned}
$$

$$
M_{V_{2}}^{2}-M_{V_{1}}^{2}>0 \Rightarrow \lambda_{4}>0
$$

$$
M_{V \pm}^{2}-M_{V_{1}}^{2}>0 \Rightarrow \lambda_{3}+\lambda_{4}>0
$$

Main aspects of the model

For phenomenological proposes we will work on a different base of free parameters

$$
\begin{equation*}
M_{V_{1}}, \quad M_{V_{2}}, \quad M_{V \pm}, \quad \lambda_{L}, \quad \alpha_{2}, \quad \alpha_{3} \tag{1}
\end{equation*}
$$

where $\lambda_{L}=\lambda_{2}+\lambda_{3}+\lambda_{4}$ play an important role controlling the interaction between the SM Higgs and DM.

$$
2 \frac{M_{W} \sin \theta_{W}}{e} g^{\mu \nu} \lambda_{L}
$$

It is convenient to write the quartic coupling and the mass parameter as a function of the new free parameters

$$
\begin{align*}
\lambda_{2}=\lambda_{L}+2 \frac{\left(M_{V_{1}}^{2}-M_{V \pm}^{2}\right)}{v^{2}}, & \lambda_{3}=\frac{2 M_{V \pm}^{2}-M_{V_{1}}^{2}-M_{V_{2}}^{2}}{v^{2}}, \\
\lambda_{4}=\frac{M_{V_{2}}^{2}-M_{V_{1}}^{2}}{v^{2}}, & M_{V}^{2}=M_{V_{1}}^{2}+\frac{v^{2} \lambda_{L}}{2} . \tag{2}
\end{align*}
$$

Constraints from LEP data

Allowed mass region for neutral vectors.

Allowed mass region for charged and neutral vectors.

Excluded by LEP I

$$
\begin{array}{ll}
M_{V_{1}}+M_{V \pm}<M_{W \pm} & M_{V_{1}}+M_{V_{2}}<M_{Z} \\
M_{V_{2}}+M_{V \pm}<M_{W \pm} & 2 M_{V \pm}<M_{Z}
\end{array}
$$

Excluded by LEP II

$$
\begin{gathered}
M_{V_{1}}<100 \mathrm{GeV} \& M_{V_{2}}<200 \mathrm{GeV} \quad \& M_{V_{2}}-M_{V_{1}}>8 \mathrm{GeV} \text { \& } M_{V_{1}}+M_{V_{2}}<\sqrt{s} L E P \\
M_{V \pm} \lesssim 93 \mathrm{GeV}
\end{gathered}
$$

Constraints from LHC Higgs data

- Invisible Higgs Decay: The decay channel $H \rightarrow V_{1} V_{1}$ is kinematically open when $M_{V_{1}}<M_{H} / 2$ and it can affect the total width decay of H .

$$
\begin{aligned}
& \text { Excluded by Higgs data } \\
& \operatorname{Br}(H \rightarrow \text { invisible })>24 \%
\end{aligned}
$$

- Diphoton signal strength $\mu^{\gamma \gamma}$:

The $\mu^{\gamma \gamma}$ in the DVDM normalized to the SM value can be written as

$$
\begin{aligned}
& \text { Diphoton signal limit } \\
& \frac{\mathrm{Br}^{B S M}(H \rightarrow \gamma \gamma)}{B r^{S M}(H \rightarrow \gamma \gamma)}=\mu^{\gamma \gamma}=0.99 \pm 0.14
\end{aligned}
$$

Relic Density Plots

Relic Density limit

$$
\Omega_{\chi} h^{2}=0.1184 \pm 0.0012
$$

Two scenarios of large and small ΔM qualitatively covers the whole parameter space.

Direct Detection

Rescaled SI cross section

$$
\hat{\sigma}_{S I}=\frac{\Omega_{D M}}{\Omega_{\text {Planck }}} \times \sigma_{\text {SI }}\left(V_{1} p \rightarrow V_{1} p\right)
$$

Quasi-degenerate case.

Non-negligible mass split.

Constraints on the Parameter space

Colour map of relic density in the $M_{V_{1}}, \lambda_{L}$ plane

Colour map of relic density in the $M_{V_{1}}, M_{V_{2}}$ plane

Constraints on the Parameter space

Colour map of relic density in the $M_{V_{1}}, \lambda_{L}$ plane

Colour map of relic density in the $M_{V_{1}}, M_{V_{2}}$ plane

Constraints on the Parameter space

Colour map of relic density in the $M_{V_{1}}, \lambda_{L}$ plane

Colour map of relic density in the $M_{V_{1}}, M_{V_{2}}$ plane

Constraints on the Parameter space

Colour map of relic density in the $M_{V_{1}}, \lambda_{L}$ plane

Colour map of relic density in the $M_{V_{1}}, M_{V_{2}}$ plane

Constraints on the Parameter space

Colour map of relic density in the $M_{V_{1}}, \lambda_{L}$ plane

Colour map of relic density in the $M_{V_{1}}, M_{V_{2}}$ plane

Constraints on the Parameter space

Colour map of relic density in the $M_{V_{1}}, \lambda_{L}$ plane

Colour map of relic density in the $M_{V_{1}}, M_{V_{2}}$ plane

Constraints on the Parameter space

Colour map of relic density in the $M_{V_{1}}, \lambda_{L}$ plane

Colour map of relic density in the $M_{V_{1}}, M_{V_{2}}$ plane

Vector Dark Matter as the only source

Scatter plot of the Relic Density in the plane $M_{V_{1}}, \lambda_{L}$ after all constraints.

Scatter plot of the Relic Density in the plane $M_{V_{1}}, M_{V_{2}}$ after all constraints.

Satisfy PLANCK limits
 $M_{V_{1}}>840 \mathrm{GeV}$

Production at LHC

Felipe Rojas Abatte
Dark Matter from a vector field in the fundamental representa

Conclusions

- We studied a simple extension to the SM including a new vector doublet.
- The model acquires a Z_{2} symmetry when the only nonstandard dimension 3 operator is eliminated, allowing the neutral V_{1} component to be a good Dark Matter candidate.
- The model is consistent with experimental constraints and it is capable to fulfill the DM budget with masses over 840 GeV
- The model is strongly challenged by experimental data and by unitarity constraints.

$H \rightarrow \gamma \gamma$ constraints from LHC data

Diphoton rate vs DM mass $M_{V_{1}}$.

Diphoton rate as a function of $M_{V} \pm$ and λ_{2}.

The $\mu^{\gamma \gamma}$ in the DVDM normalized to the SM value can be written as

Diphoton signal limit

$$
\frac{B r^{B S M}(H \rightarrow \gamma \gamma)}{B r^{S M}(H \rightarrow \gamma \gamma)}=\mu^{\gamma \gamma}=0.99 \pm 0.14
$$

Contribution of the DVDM on the Higgs decay into two photons.

Indirect Detection

Rescaled average annihilation σ

$$
\langle\hat{\sigma v}\rangle=\frac{\Omega_{D M}}{\Omega_{\text {Planck }}} \times\langle\sigma v\rangle
$$

Quasi－degenerate case．

Non－negligible mass split．

Perturbative Unitarity

The main theoretical challenge faced by our construction is the eventual violation of perturbative unitarity introduced by the new massive vectors. We studied the process $V^{1} h \rightarrow V^{1} h$ and $Z V^{ \pm} \rightarrow Z V^{ \pm}$

Maximum energy scale Λ until the process $V^{1} h \rightarrow V^{1} h$ start to violate perturbative unitarity.

Maximum energy scale \wedge until the process $Z V^{ \pm} \rightarrow Z V^{ \pm}$ start to violate perturbative unitarity.

