Frame (in)equivalence in QFT and Cosmology

Mario Herrero-Valea

École Polytecnique Fédérale de Lausanne

1602.06962 M. H-V 1812.08187 K. Falls and M. H-V

- QFT is a wonderful and powerful framework
- It gives us a set of rules to compute correlators and physical

- QFT is a wonderful and powerful framework
- It gives us a set of rules to compute correlators and physical

Consider a classical variable q with action S(q)

$$Z[J] = \int [dq] e^{-S(q) - J \cdot q}$$

$$\Gamma[Q] = -\log Z[J(Q)] - J(Q) \cdot Q$$

- QFT is a wonderful and powerful framework
- It gives us a set of rules to compute correlators and physical

Consider a classical variable q with action S(q)

$$Z[J] = \int [dq] e^{-S(q) - J \cdot q}$$

$$\Gamma[Q] = -\log Z[J(Q)] - J(Q) \cdot Q$$

However, many things that we give for granted about QFT are not true when gravity is in the game

$$S = \int d^4x \sqrt{g} \left[\frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) + F(R,\phi) \right]$$

$$S = \int d^4x \sqrt{g} \left[\frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) + F(R,\phi) \right]$$

 $F(R,\phi) \sim R, R^2, R\phi^2, ...$

$$S = \int d^4x \sqrt{g} \left[\frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) + F(R, \phi) \right]$$
$$F(R, \phi) \sim R, R^2, R\phi^2, \dots$$

For example, in Higgs inflation (Bezrukov & Shaposhnikov, 2008)

$$S = \int d^4x \sqrt{g} \left[-\frac{1}{2} \left(M_P^2 + \xi \phi^2 \right) R + \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right]$$

$$S = \int d^4x \sqrt{g} \left[\frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) + F(R, \phi) \right]$$
$$F(R, \phi) \sim R, R^2, R\phi^2, \dots$$

For example, in Higgs inflation (Bezrukov & Shaposhnikov, 2008)

$$S = \int d^4x \sqrt{g} \left[-\frac{1}{2} \left(M_P^2 + \xi \phi^2 \right) R + \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right]$$

This term is 'ugly'

$$\tilde{g}_{\mu\nu} = \Omega^2(\phi)g_{\mu\nu}$$

$$\tilde{\phi} = \tilde{\phi}(\phi)$$
$$S = \int d^x \sqrt{\tilde{g}} \left[-\frac{M_P^2}{2}R + \frac{1}{2}\partial_\mu \tilde{\phi} \partial^\mu \tilde{\phi} - \tilde{V}(\tilde{\phi}) \right]$$

$$S = \int d^4x \sqrt{g} \left[\frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) + F(R, \phi) \right]$$
$$F(R, \phi) \sim R, R^2, R\phi^2, \dots$$

For example, in Higgs inflation (Bezrukov & Shaposhnikov, 2008)

$$S = \int d^4x \sqrt{g} \left[-\frac{1}{2} \left(M_P^2 + \xi \phi^2 \right) R + \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right]$$

Jordan Frame

$$S = \int d^4x \sqrt{g} \left[\frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) + F(R, \phi) \right]$$
$$F(R, \phi) \sim R, R^2, R\phi^2, \dots$$

For example, in Higgs inflation (Bezrukov & Shaposhnikov, 2008)

$$S = \int d^4x \sqrt{g} \left[-\frac{1}{2} \left(M_P^2 + \xi \phi^2 \right) R + \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right]$$

In general we need to include Quantum Corrections and thus evaluate the Quantum Effective Action

$$\Gamma[g,\phi]$$

Is physics equivalent in both frames?

Is physics equivalent in both frames?

Classically, it is trivial

$$\begin{split} \Phi, \ \tilde{\Phi}(\Phi) \\ \frac{\delta S}{\delta \Phi} = \frac{\delta \tilde{\Phi}}{\delta \Phi} \frac{\delta S}{\delta \tilde{\Phi}} \end{split}$$

Is physics equivalent in both frames?

Classically, it is trivial

$$\begin{split} \Phi, \ \tilde{\Phi}(\Phi) \\ \frac{\delta S}{\delta \Phi} &= \frac{\delta \tilde{\Phi}}{\delta \Phi} \frac{\delta S}{\delta \tilde{\Phi}} \end{split}$$

However, in Quantum Field Theory we need to integrate over off-shell states

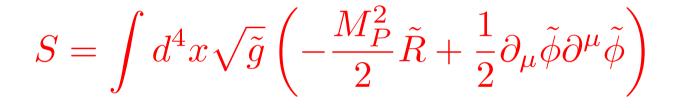
$$Z[J] = \int [d\Phi] e^{-S[\Phi] - J \cdot \Phi}$$

- [19] S. Capozziello, R. de Ritis, and Alma Angela Marino. Some aspects of the cosmological conformal equivalence between 'Jordan frame' and 'Einstein frame'. *Class. Quant. Grav.*, 14:3243–3258, 1997.
- [20] Shin'ichi Nojiri and Sergei D. Odintsov. Quantum dilatonic gravity in (D = 2)-dimensions, (D = 4)-dimensions and (D = 5)-dimensions. Int. J. Mod. Phys., A16:1015–1108, 2001.
- [21] Alexander Yu. Kamenshchik and Christian F. Steinwachs. Question of quantum equivalence between Jordan frame and Einstein frame. *Phys. Rev.*, D91(8):084033, 2015.
- [22] S. Capozziello, P. Martin-Moruno, and C. Rubano. Physical non-equivalence of the Jordan and Einstein frames. *Phys. Lett.*, B689:117–121, 2010.
- [23] Marieke Postma and Marco Volponi. Equivalence of the Einstein and Jordan frames. Phys. Rev., D90(10):103516, 2014.
- [24] Narayan Banerjee and Barun Majumder. A question mark on the equivalence of Einstein and Jordan frames. *Phys. Lett.*, B754:129–134, 2016.
- [25] Sachin Pandey and Narayan Banerjee. Equivalence of Jordan and Einstein frames at the quantum level. Eur. Phys. J. Plus, 132(3):107, 2017.
- [26] Enrique Alvarez and Jorge Conde. Are the string and Einstein frames equivalent. Mod. Phys. Lett., A17:413-420, 2002.
- [27] Alexandros Karam, Thomas Pappas, and Kyriakos Tamvakis. Frame-dependence of higher-order inflationary observables in scalar-tensor theories. *Phys. Rev.*, D96(6):064036, 2017.
- [28] Sachin Pandey, Sridip Pal, and Narayan Banerjee. Equivalence of Einstein and Jordan frames in quantized anisotropic cosmological models. Annals Phys., 393:93–106, 2018.
- [29] Marios Bounakis and Ian G. Moss. Gravitational corrections to Higgs potentials. JHEP, 04:071, 2018.
- [30] Alexandros Karam, Angelos Lykkas, and Kyriakos Tamvakis. Frame-invariant approach to higherdimensional scalar-tensor gravity. *Phys. Rev.*, D97(12):124036, 2018.
- [31] V. Faraoni and E. Gunzig. Einstein frame or Jordan frame? Int. J. Theor. Phys., 38:217–225, 1999.
- [32] Dario Benedetti and Filippo Guarnieri. Brans-Dicke theory in the local potential approximation. New J. Phys., 16:053051, 2014.
- [33] Nobuyoshi Ohta. Quantum equivalence of f(R) gravity and scalar-tensor theories in the Jordan and Einstein frames. *PTEP*, 2018(3):033B02, 2018.
- [34] Enrique Alvarez, Mario Herrero-Valea, and C. P. Martin. Conformal and non Conformal Dilaton Gravity. JHEP, 10:115, 2014.

Let us consider an example

$$S = \int d^4x \sqrt{g} \left(-\frac{\xi}{2} \phi^2 R + \frac{1}{2} \partial_\mu \phi \partial^\mu \phi \right)$$

Scale Invariant $g_{\mu\nu} \rightarrow \alpha^2 g_{\mu\nu}$ $\phi \rightarrow \alpha^{-1} \phi$

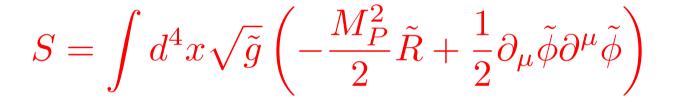


$$\begin{split} & \text{Shift Invariant} \\ & \tilde{\phi} \to \tilde{\phi} + \tilde{\alpha} \end{split}$$

Let us consider an example

$$S = \int d^4x \sqrt{g} \left(-\frac{\xi}{2} \phi^2 R + \frac{1}{2} \partial_\mu \phi \partial^\mu \phi \right)$$

Scale Invariant $g_{\mu\nu} \rightarrow \alpha^2 g_{\mu\nu}$ $\phi \rightarrow \alpha^{-1} \phi$



$$\begin{split} & \text{Shift Invariant} \\ & \tilde{\phi} \to \tilde{\phi} + \tilde{\alpha} \end{split}$$

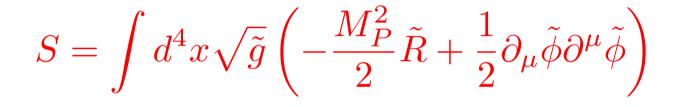
Scale invariant theories are anomalous $\langle 0|\mathcal{A}|0\rangle \neq 0$

Shift symmetric theories are not anomalous $\langle 0|\mathcal{A}|0
angle=0$

Let us consider an example

$$S = \int d^4x \sqrt{g} \left(-\frac{\xi}{2} \phi^2 R + \frac{1}{2} \partial_\mu \phi \partial^\mu \phi \right)$$

Scale Invariant $g_{\mu\nu} \rightarrow \alpha^2 g_{\mu\nu}$ $\phi \rightarrow \alpha^{-1} \phi$



$$\begin{split} & \text{Shift Invariant} \\ & \tilde{\phi} \to \tilde{\phi} + \tilde{\alpha} \end{split}$$

Both Quantum Field Theories are **NOT** equivalent!!!!

Their S-matrices are different

$$Z[J] = \int [d\Phi] e^{-S(\Phi) - J \cdot \Phi}$$

$$Z[J] = \int [d\Phi] e^{-S(\Phi) - J \cdot \Phi}$$

$$Z[J] = \int [d\Phi] e^{-S(\Phi) - J \cdot \Phi}$$
Invariant on-shell

$$Z[J] = \int [d\Phi] e^{-S(\Phi) - J \cdot \Phi}$$
Not invariant!!!!

 $[d\Phi] = \prod_{x} \frac{d\Phi(x)}{\sqrt{2\pi}} \sqrt{\det C}$

$$Z[J] = \int [d\Phi] e^{-S(\Phi) - J \cdot \Phi}$$
Not invariant!!!!
$$[d\Phi] = \prod_{x} \frac{d\Phi(x)}{\sqrt{2\pi}} \sqrt{\det C}$$

C(x,y) is an ultra-local metric on field space

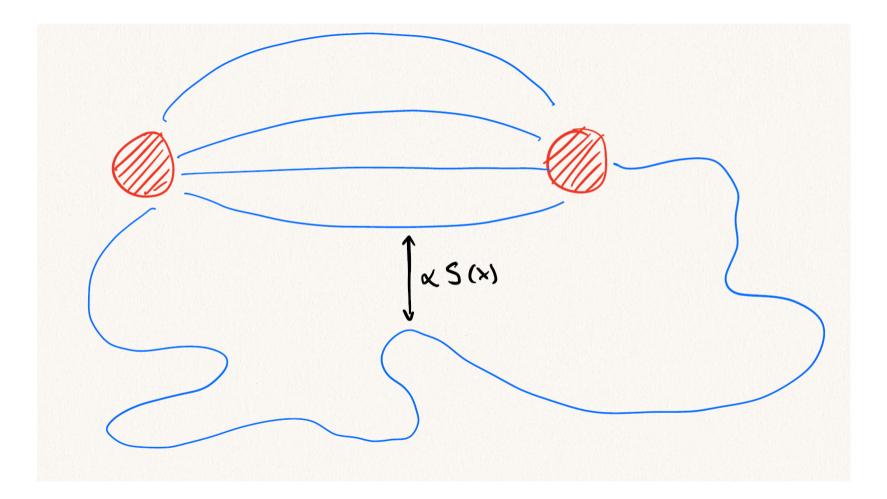
$$C(x,y) = \Lambda^2 \delta(x-y)$$

Consider a simple free theory

$$S = \int d^4x \, \frac{1}{2} \partial_\mu \phi \partial^\mu \phi$$
$$Z[0] = \det \left(C^{-1} \Box \right)^{-\frac{1}{2}} = \det \left(\frac{\Box}{\Lambda^2} \right)^{-\frac{1}{2}}$$

Consider a simple free theory

Consider a simple free theory



This is the key point

In flat space it is enough to define C(x,y) as before

$$C(x,y) = \Lambda^2 \delta(x-y)$$

This is the key point

In flat space it is enough to define C(x,y) as before

$$C(x,y) = \Lambda^2 \delta(x-y)$$

But in curved space, diff invariance imposes

$$C(x,y) = \Lambda^2 \delta(x-y) \sqrt{g}$$

The field space metric depends on the space-time metric

This is the key point

In flat space it is enough to define C(x,y) as before

$$C(x,y) = \Lambda^2 \delta(x-y)$$

But in curved space, diff invariance imposes

$$C(x,y) = \Lambda^2 \delta(x-y) \sqrt{g}$$

The field space metric C(x,y) then transforms when changing frame!!!!

In the Einstein frame

$$\tilde{C}(x,y) = \Lambda^2 \sqrt{\tilde{g}} \,\delta(x-y)$$

In the Jordan frame

$$C(x,y) = \Lambda^2 \sqrt{g} \,\delta(x-y)$$

But if we transform...

In the Einstein frame

$$\tilde{C}(x,y) = \Lambda^2 \sqrt{\tilde{g}} \,\delta(x-y)$$

In the Jordan frame

$$C(x,y) = \Lambda^2 \sqrt{g} \,\delta(x-y)$$

But if we transform...

 $C(x, y)_{\text{Einstein}} = \Lambda^2 \sqrt{\tilde{g}} \,\delta(x - y) \Omega(\phi)^2$ $C(x, y)_{\text{Einstein}} \neq \tilde{C}(x, y)$

- Define the physical frame of the theory
- Define the path integral in that frame with a flat metric

$$C(x,y) = \Lambda^2 \delta(x-y)$$

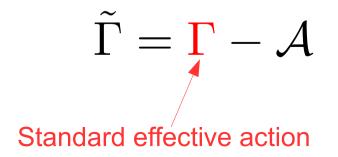
- This defines the theory and its physical consequences
- In any other frame, transform both the action and the integration measure
- This is equivalent to

$$\tilde{\Gamma} = \Gamma - \mathcal{A}$$

- Define the physical frame of the theory
- Define the path integral in that frame with a flat metric

$$C(x,y) = \Lambda^2 \delta(x-y)$$

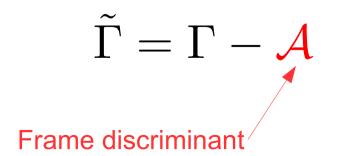
- This defines the theory and its physical consequences
- In any other frame, transform both the action and the integration measure
- This is equivalent to



- Define the physical frame of the theory
- Define the path integral in that frame with a flat metric

$$C(x,y) = \Lambda^2 \delta(x-y)$$

- This defines the theory and its physical consequences
- In any other frame, transform both the action and the integration measure
- This is equivalent to



- Define the physical frame of the theory
- Define the path integral in that frame with a flat metric

$$C(x,y) = \Lambda^2 \delta(x-y)$$

- This defines the theory and its physical consequences
- In any other frame, transform both the action and the integration measure
- This is equivalent to

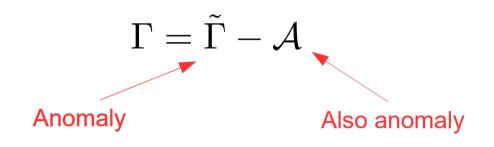
$$\mathcal{A} = \frac{1}{(4\pi)^2} \int d^4x \sqrt{g} \operatorname{CT} \log \Omega$$

This solves the problem in the example

If you start in the Einstein frame...

There is no anomaly

When you transform to Jordan



This solves the problem in the example

If you start in the Einstein frame...

There is no anomaly

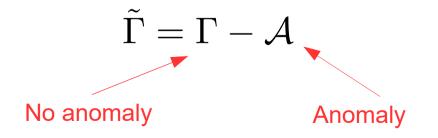
When you transform to Jordan

 $\Gamma = \tilde{\Gamma} - \mathcal{A}$

If you start in the Jordan frame...

There is anomaly

When you transform to Einstein



Conclusions

- A QFT is defined by the action and the integration measure
- Changing variables in the effective action involves transforming the measure
- This transformation induces new finite pieces
- These new pieces modify the effective potential
- There are potential physical effects induced by them
- This is not restricted to conformal rescaling nor to scale invariant theories
- Any field redefinition will produce the same effect

