

SCALAR CLOUDS AROUND BLACK HOLES

BLACK HOLES ARE BECOMING MORE ACCESSIBLE

BLACK HOLES HAVE NO (SCALAR) HAIR

Assumptions:

Metric and (minimally coupled) field are stationary, embedded in an asymptotically flat spacetime, hair is regular at the horizon.

 Counterexample:
Superradiance in a complex scalar, with spinning BH (Herdeiro & Radu PRL 112 2014)

SCALAR DARK MATTER

- If DM is light (sub eV) it should be a bosonic particle with a high occupation number
- Expectation value of coherent state

$$\nabla_{\mu}\nabla^{\mu}\phi = -m^2\phi$$

Nature Phys. 10, 496-499 Schive et al 2014

SCALAR DARK MATTER

What happens to the field around a BH in a homogeneously oscillating region?

SCALAR DARK MATTER CLOUDS

Katy Clough, Pedro G. Ferreira, Macarena Lagos arXiv:1904.12783

SCALAR DARK MATTER CLOUDS

arXiv:1904.12783

SCALAR DARK MATTER CLOUDS

Katy Clough, Pedro G. Ferreira, Macarena Lagos arXiv:1904.12783

WHY R^{-3/4}

Assume a uniform flux (independent of r)

Black Hole Hair from Scalar Dark Matter Lam Hui, Daniel Kabat, Xinyu Li, Luca Santoni, Sam S. C. Wong JCAP 1906 (2019) no.06, 038

Confluent Huen function

RADIAL PROFILES VARY DEPENDING ON SCALAR MASS

DOES THE GROWTH END?

IMPRINTS ON THE METRIC

SIZE OF THE EFFECT FOR TYPICAL ASYMPTOTIC DM DENSITY

Maximum energy density at horizon

$$\rho \sim \rho_0 \left(\frac{r_0}{r_s}\right)^{3/2} \sim 10^9 \rho_0 \left(\frac{r_0/r_s}{10^6}\right)^{3/2}$$

Comparison to curvature of BH

$$\frac{16\pi G\rho}{1/r_s^2} \sim 10^{-12} \left(\frac{M_{BH}}{10^9 M_{\odot}}\right)^2 \left(\frac{\rho_0}{1 \text{ GeV/cm}^3}\right) \left(\frac{r_0/r_s}{10^6}\right)^{3/2}$$

Black Hole Hair from Scalar Dark Matter Lam Hui, Daniel Kabat, Xinyu Li, Luca Santoni, Sam S. C. Wong JCAP 1906 (2019) no.06, 038

WILL A COMPANION ENHANCE OR DESTROY THESE CLOUDS?

Effective field theory for black holes with induced scalar charges Leong Khim Wong, Anne-Christine Davis, Ruth Gregory arXiv:1903.07080

Ultralight Dark Matter Resonates with Binary Pulsars Diego Blas, Diana López Nacir, and Sergey Sibiryakov Phys. Rev. Lett. 118, 261102 2017

Orbital fingerprints of ultralight scalar fields around black holes Miguel C. Ferreira, Caio F. B. Macedo, Vitor Cardoso Phys.Rev. D96 (2017) no.8, 083017

IMPACT ON THE MERGER SIGNAL

IN SUMMARY

- New opportunities to study physics in untested regimes around BHs
- BHs can have long lived non trivial scalar configurations, and will do if DM is bosonic
- Need numerics to study more realistic dynamical cases

