Quantum Walks and Neutrinos

Farhan Tanvir Chowdhury

Quantum Analogue of Classical Random Walks

- Classical: Walker traverses path formed of fixed random shifts (say ± 1, depending on coin flip) on some space.

Quantum Analogue of Classical Random Walks

- Classical: Walker traverses path formed of fixed random shifts (say ± 1, depending on coin flip) on some space.
- Quantum: Walker traverses path formed of superposition of random shifts on some composite \mathcal{H} based on flipping quantum coin, typical basis: $|\uparrow\rangle=(1,0)^{T}$ and $|\downarrow\rangle=(0,1)^{T}$.

Quantum Analogue of Classical Random Walks

- Classical: Walker traverses path formed of fixed random shifts (say ± 1, depending on coin flip) on some space.
- Quantum: Walker traverses path formed of superposition of random shifts on some composite \mathcal{H} based on flipping quantum coin, typical basis: $|\uparrow\rangle=(1,0)^{T}$ and $|\downarrow\rangle=(0,1)^{T}$.

Quantum Walks (QWs) analogous to Feynman's Checkerboard for 1+1D Dirac Equation:

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=m c^{2} \sigma_{x} \psi-i \hbar \sigma_{z} \frac{\partial \psi}{\partial x} \tag{1}
\end{equation*}
$$

- Feynman's original 1+1D checkerboard has been extended to higher dimensions, and also used to simulate neutrino mixing and neutrino oscillations by Petr Jizba in 2015 paper.
- QWs very useful for simulating relativistic quantum phenomena, like Graphene Carrier Density and Relativistic Transport.

Quantum Walks: Discrete and Continuous

- Continuous Time Quantum Walk (CTQWs): Apply unitary operator $e^{-i A t}$ on some graph G with adjacency matrix A.

Quantum Walks: Discrete and Continuous

- Continuous Time Quantum Walk (CTQWs): Apply unitary operator $e^{-i A t}$ on some graph G with adjacency matrix A.
- Discrete Time Quantum Walk (DTQWs): Repeat quantum coin flip, particle shifts left/right on $\mathcal{H}=\mathcal{H}_{c} \otimes \mathcal{H}_{x}$, depending on coin being head/tails.

Quantum Walks: Discrete and Continuous

- Continuous Time Quantum Walk (CTQWs): Apply unitary operator $e^{-i A t}$ on some graph G with adjacency matrix A.
- Discrete Time Quantum Walk (DTQWs): Repeat quantum coin flip, particle shifts left/right on $\mathcal{H}=\mathcal{H}_{c} \otimes \mathcal{H}_{x}$, depending on coin being head/tails.

Particle starts at origin denoted by position state $|0\rangle$ and if quantum coin is set as:

$$
\left(\begin{array}{cc}
\cos \epsilon & -i \sin \epsilon \tag{2}\\
-i \sin \epsilon & \cos \epsilon
\end{array}\right)
$$

Then for $\epsilon \rightarrow 0$, it has been shown (rigorously) that we can recover the Dirac Equation:

$$
\begin{equation*}
\left(i \gamma^{\mu} \partial_{\mu}+m\right) \psi=0 \tag{3}
\end{equation*}
$$

Quantum Walks: Discrete and Continuous

- Continuous Time Quantum Walk (CTQWs): Apply unitary operator $e^{-i A t}$ on some graph G with adjacency matrix A.
- Discrete Time Quantum Walk (DTQWs): Repeat quantum coin flip, particle shifts left/right on $\mathcal{H}=\mathcal{H}_{c} \otimes \mathcal{H}_{x}$, depending on coin being head/tails.

Particle starts at origin denoted by position state $|0\rangle$ and if quantum coin is set as:

$$
\left(\begin{array}{cc}
\cos \epsilon & -i \sin \epsilon \tag{2}\\
-i \sin \epsilon & \cos \epsilon
\end{array}\right)
$$

Then for $\epsilon \rightarrow 0$, it has been shown (rigorously) that we can recover the Dirac Equation:

$$
\begin{equation*}
\left(i \gamma^{\mu} \partial_{\mu}+m\right) \psi=0 \tag{3}
\end{equation*}
$$

Details in paper by Frederick W. Strauch, doi.org/10.1063/1.2759837.

Quantum Walks: Discrete and Continuous

- Continuous Time Quantum Walk (CTQWs): Apply unitary operator $e^{-i A t}$ on some graph G with adjacency matrix A.
- Discrete Time Quantum Walk (DTQWs): Repeat quantum coin flip, particle shifts left/right on $\mathcal{H}=\mathcal{H}_{c} \otimes \mathcal{H}_{x}$, depending on coin being head/tails.

Particle starts at origin denoted by position state $|0\rangle$ and if quantum coin is set as:

$$
\left(\begin{array}{cc}
\cos \epsilon & -i \sin \epsilon \tag{2}\\
-i \sin \epsilon & \cos \epsilon
\end{array}\right)
$$

Then for $\epsilon \rightarrow 0$, it has been shown (rigorously) that we can recover the Dirac Equation:

$$
\begin{equation*}
\left(i \gamma^{\mu} \partial_{\mu}+m\right) \psi=0 \tag{3}
\end{equation*}
$$

Details in paper by Frederick W. Strauch, doi.org/10.1063/1.2759837.

- In arXiv:quant-ph/0606050, Strauch connects DTQWs to CTQWs.

Bringing in the Neutrinos

- Introduced to explain β decay (Pauli 1930)

Bringing in the Neutrinos

- Introduced to explain β decay (Pauli 1930), detected by Cowan and Reines (1956).

Bringing in the Neutrinos

- Introduced to explain β decay (Pauli 1930), detected by Cowan and Reines (1956).
- SM predicted massless Neutrinos, lead to Solar Neutrino Problem.

Bringing in the Neutrinos

- Introduced to explain β decay (Pauli 1930), detected by Cowan and Reines (1956).
- SM predicted massless Neutrinos, lead to Solar Neutrino Problem.
- Massive Neutrinos, Neutrino Mixing and Neutrino Oscillations (Pontecorvo 1957).
- Introduced to explain β decay (Pauli 1930), detected by Cowan and Reines (1956).
- SM predicted massless Neutrinos, lead to Solar Neutrino Problem.
- Massive Neutrinos, Neutrino Mixing and Neutrino Oscillations (Pontecorvo 1957).
- Solar Neutrino Problem resolution demonstrated above, and inadequacies of SM.
- Introduced to explain β decay (Pauli 1930), detected by Cowan and Reines (1956).
- SM predicted massless Neutrinos, lead to Solar Neutrino Problem.
- Massive Neutrinos, Neutrino Mixing and Neutrino Oscillations (Pontecorvo 1957).
- Solar Neutrino Problem resolution demonstrated above, and inadequacies of SM.
- Exact Neutrino field nature (Majorana/Dirac) is still open.
- Introduced to explain β decay (Pauli 1930), detected by Cowan and Reines (1956).
- SM predicted massless Neutrinos, lead to Solar Neutrino Problem.
- Massive Neutrinos, Neutrino Mixing and Neutrino Oscillations (Pontecorvo 1957).
- Solar Neutrino Problem resolution demonstrated above, and inadequacies of SM.
- Exact Neutrino field nature (Majorana/Dirac) is still open.
- Only left handed (Dirac) neutrinos interact within SM, and we consider these.
- Introduced to explain β decay (Pauli 1930), detected by Cowan and Reines (1956).
- SM predicted massless Neutrinos, lead to Solar Neutrino Problem.
- Massive Neutrinos, Neutrino Mixing and Neutrino Oscillations (Pontecorvo 1957).
- Solar Neutrino Problem resolution demonstrated above, and inadequacies of SM.
- Exact Neutrino field nature (Majorana/Dirac) is still open.
- Only left handed (Dirac) neutrinos interact within SM, and we consider these.
- We now look at simulating (using DTQWs) standard neutrino oscillations in matter, using framework of Molfetta et al (arXiv:1607.00529v2).

Neutrino Model

- Introduce flavour states $\tilde{\Psi}_{\alpha}(\alpha=e, \mu, \tau)$ related to the mass eigenstates by unitary transformation:

$$
\begin{equation*}
\tilde{\Psi}_{\alpha}(t, x)=\sum_{i} R_{\alpha i} \Psi_{i}(t, x), \tag{4}
\end{equation*}
$$

where $\Psi_{i}(t, x)$ is the neutrino field with mass m_{i}.

Neutrino Model

- Introduce flavour states $\tilde{\Psi}_{\alpha}(\alpha=e, \mu, \tau)$ related to the mass eigenstates by unitary transformation:

$$
\begin{equation*}
\tilde{\Psi}_{\alpha}(t, x)=\sum_{i} R_{\alpha i} \Psi_{i}(t, x), \tag{4}
\end{equation*}
$$

where $\Psi_{i}(t, x)$ is the neutrino field with mass m_{i}.

- Suppose $\left|\nu_{\alpha}\right\rangle$ produced at $t=0$, then at t the neutrino state evolves according to

$$
\begin{equation*}
\left|\nu_{\alpha}\right\rangle_{t}=e^{-i H t} \sum_{i=1}^{3} R_{\alpha i}^{*}\left|\nu_{i}\right\rangle=\sum_{i}\left|\nu_{i}\right\rangle e^{-i E_{i} t} R_{\alpha i}^{*} \tag{5}
\end{equation*}
$$

Neutrino Model

- Introduce flavour states $\tilde{\Psi}_{\alpha}(\alpha=e, \mu, \tau)$ related to the mass eigenstates by unitary transformation:

$$
\begin{equation*}
\tilde{\Psi}_{\alpha}(t, x)=\sum_{i} R_{\alpha i} \Psi_{i}(t, x) \tag{4}
\end{equation*}
$$

where $\Psi_{i}(t, x)$ is the neutrino field with mass m_{i}.

- Suppose $\left|\nu_{\alpha}\right\rangle$ produced at $t=0$, then at t the neutrino state evolves according to

$$
\begin{equation*}
\left|\nu_{\alpha}\right\rangle_{t}=e^{-i H t} \sum_{i=1}^{3} R_{\alpha i}^{*}\left|\nu_{i}\right\rangle=\sum_{i}\left|\nu_{i}\right\rangle e^{-i E_{i} t} R_{\alpha i}^{*} \tag{5}
\end{equation*}
$$

So at t, the initial neutrino can be detected as any flavour ν_{β} with R being:

$$
R=\left(\begin{array}{cc}
\cos \phi_{12} & \sin \phi_{12} \tag{6}\\
-\sin \phi_{12} & \cos \phi_{12}
\end{array}\right)
$$

and ϕ_{12} being the mixing angle.

Neutrino Model

- Introduce flavour states $\tilde{\Psi}_{\alpha}(\alpha=e, \mu, \tau)$ related to the mass eigenstates by unitary transformation:

$$
\begin{equation*}
\tilde{\Psi}_{\alpha}(t, x)=\sum_{i} R_{\alpha i} \Psi_{i}(t, x) \tag{4}
\end{equation*}
$$

where $\Psi_{i}(t, x)$ is the neutrino field with mass m_{i}.

- Suppose $\left|\nu_{\alpha}\right\rangle$ produced at $t=0$, then at t the neutrino state evolves according to

$$
\begin{equation*}
\left|\nu_{\alpha}\right\rangle_{t}=e^{-i H t} \sum_{i=1}^{3} R_{\alpha i}^{*}\left|\nu_{i}\right\rangle=\sum_{i}\left|\nu_{i}\right\rangle e^{-i E_{i} t} R_{\alpha i}^{*} \tag{5}
\end{equation*}
$$

So at t, the initial neutrino can be detected as any flavour ν_{β} with R being:

$$
R=\left(\begin{array}{cc}
\cos \phi_{12} & \sin \phi_{12} \tag{6}\\
-\sin \phi_{12} & \cos \phi_{12}
\end{array}\right)
$$

and ϕ_{12} being the mixing angle.

- The transition probability for $\nu_{\alpha} \rightarrow \nu_{\beta}$:

$$
\begin{equation*}
P\left(\nu_{\alpha} \rightarrow \nu_{\beta} ; t\right)=\left|\sum_{i=1}^{3} R_{\beta i} e^{-i E_{i} t} R_{\alpha i}^{*}\right|^{2} \tag{7}
\end{equation*}
$$

- Consider QW acting on Hilbert space $\mathcal{H}=\mathcal{H}_{\text {spin }} \otimes \mathcal{H}_{n}$ with \mathcal{H}_{n} describing n-flavour Hilbert space of the walker
- Consider QW acting on Hilbert space $\mathcal{H}=\mathcal{H}_{\text {spin }} \otimes \mathcal{H}_{n}$ with \mathcal{H}_{n} describing n-flavour Hilbert space of the walker, with evolution equations:

$$
\left[\begin{array}{c}
\psi_{j+1, p}^{1} \tag{8}\\
\ldots \\
\psi_{j+1, p}^{n}
\end{array}\right]=\left(\bigoplus_{h=1, n} S Q_{\epsilon}^{h}\right)\left[\begin{array}{c}
\psi_{j, p}^{1} \\
\ldots \\
\psi_{j, p}^{n}
\end{array}\right]
$$

- Consider QW acting on Hilbert space $\mathcal{H}=\mathcal{H}_{\text {spin }} \otimes \mathcal{H}_{n}$ with \mathcal{H}_{n} describing n-flavour Hilbert space of the walker, with evolution equations:

$$
\left[\begin{array}{c}
\psi_{j+1, p}^{1} \tag{8}\\
\ldots \\
\psi_{j+1, p}^{n}
\end{array}\right]=\left(\bigoplus_{h=1, n} S Q_{\epsilon}^{h}\right)\left[\begin{array}{c}
\psi_{j, p}^{1} \\
\ldots \\
\psi_{j, p}^{n}
\end{array}\right]
$$

- S is a spin-dependent translation operator and Q_{ϵ}^{h} is the quantum coin:

$$
Q_{\epsilon}^{h}=\left(\begin{array}{cc}
\cos \left(\epsilon \theta_{h}\right) & i \sin \left(\epsilon \theta_{h}\right) \tag{9}\\
i \sin \left(\epsilon \theta_{h}\right) & \cos \left(\epsilon \theta_{h}\right)
\end{array}\right)
$$

with θ_{h} corresponding to fermionic mass.

- Consider QW acting on Hilbert space $\mathcal{H}=\mathcal{H}_{\text {spin }} \otimes \mathcal{H}_{n}$ with \mathcal{H}_{n} describing n-flavour Hilbert space of the walker, with evolution equations:

$$
\left[\begin{array}{c}
\psi_{j+1, p}^{1} \tag{8}\\
\ldots \\
\psi_{j+1, p}^{n}
\end{array}\right]=\left(\bigoplus_{h=1, n} S Q_{\epsilon}^{h}\right)\left[\begin{array}{c}
\psi_{j, p}^{1} \\
\ldots \\
\psi_{j, p}^{n}
\end{array}\right]
$$

- S is a spin-dependent translation operator and Q_{ϵ}^{h} is the quantum coin:

$$
Q_{\epsilon}^{h}=\left(\begin{array}{cc}
\cos \left(\epsilon \theta_{h}\right) & i \sin \left(\epsilon \theta_{h}\right) \tag{9}\\
i \sin \left(\epsilon \theta_{h}\right) & \cos \left(\epsilon \theta_{h}\right)
\end{array}\right)
$$

with θ_{h} corresponding to fermionic mass.

- Introducing a unitary transformation R analogous to earlier slide, we get:

$$
\begin{equation*}
\tilde{\Psi}_{j+1, p}=R\left(\bigoplus_{h=1, n} S Q_{\epsilon}^{h}\right) R^{\dagger} \tilde{\Psi}_{j, p} \tag{10}
\end{equation*}
$$

- Assuming existence of a continuous limit imposes following constraint on the coin:

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0}\left[R\left(\bigoplus_{h=1, n} S Q_{\epsilon}^{h}\right) R^{\dagger}\right]=I_{2 n} \tag{11}
\end{equation*}
$$

with $Q^{i}=I_{2}$ as $\epsilon \rightarrow 0$ and $R R^{\dagger}=I_{2 n}$ by definition.

- Assuming existence of a continuous limit imposes following constraint on the coin:

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0}\left[R\left(\bigoplus_{n=1, n} S Q_{\epsilon}^{n}\right) R^{\dagger}\right]=I_{2 n} . \tag{11}
\end{equation*}
$$

with $Q^{i}=I_{2}$ as $\epsilon \rightarrow 0$ and $R R^{\dagger}=I_{2 n}$ by definition.

- With above, the DTQW recovers standard Dirac Equations of the form:

$$
\begin{equation*}
\left[\partial_{t}-\left(\bigoplus_{h=1, n} \sigma_{z}\right) \partial_{x}-i \mathcal{M}\right] \tilde{\Psi}(t, x)=0 \tag{12}
\end{equation*}
$$

describing relativistic n-flavour neutrinos in 1+1D.

- Assuming existence of a continuous limit imposes following constraint on the coin:

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0}\left[R\left(\bigoplus_{h=1, n} S Q_{\epsilon}^{h}\right) R^{\dagger}\right]=I_{2 n} \tag{11}
\end{equation*}
$$

with $Q^{i}=I_{2}$ as $\epsilon \rightarrow 0$ and $R R^{\dagger}=I_{2 n}$ by definition.

- With above, the DTQW recovers standard Dirac Equations of the form:

$$
\begin{equation*}
\left[\partial_{t}-\left(\bigoplus_{h=1, n} \sigma_{z}\right) \partial_{x}-i \mathcal{M}\right] \tilde{\Psi}(t, x)=0 \tag{12}
\end{equation*}
$$

describing relativistic n-flavour neutrinos in 1+1D.

- For 3 flavour neutrinos, the corresponding transition probability can be derived as:

$$
\begin{equation*}
P\left(\nu_{\alpha} \rightarrow \nu_{\beta} ; t\right)=\left|\sum_{k} \tilde{\psi}_{k}^{\alpha *}(0) \tilde{\psi}_{k}^{\beta}(t)\right|^{2} \tag{13}
\end{equation*}
$$

- Consider $\{e, \mu, \tau\}$ generations in vacuum, for which R recovers the PMNS mixing matrix and depends on 3 real parameters:

$$
\begin{equation*}
R=e^{i \phi_{\mu \tau} \lambda_{7}} e^{i \phi_{e \tau} \lambda_{5}} e^{i \phi_{e \mu} \lambda_{2}} \tag{14}
\end{equation*}
$$

where the λ are the Gell-Mann matrices and each $\phi_{i j}$ angle corresponds to the mixing between two neutrino species.

- Consider $\{e, \mu, \tau\}$ generations in vacuum, for which R recovers the PMNS mixing matrix and depends on 3 real parameters:

$$
\begin{equation*}
R=e^{i \phi_{\mu \tau} \lambda_{7}} e^{i \phi_{e \tau} \lambda_{5}} e^{i \phi_{e \mu} \lambda_{2}} \tag{14}
\end{equation*}
$$

where the λ are the Gell-Mann matrices and each $\phi_{i j}$ angle corresponds to the mixing between two neutrino species.

- Observe oscillatory behaviour of 3 flavour neutrinos starting from a pure electron-neutrino initial state:

$$
\begin{equation*}
\tilde{\psi}_{k}^{i *}(0)=\frac{1}{\sqrt{n}} \sum_{p=0}^{n-1} e^{-i\left(k-k_{0}\right) x_{p}} \otimes(1,0,0,0,0,0)^{\top} \tag{15}
\end{equation*}
$$

- Consider $\{e, \mu, \tau\}$ generations in vacuum, for which R recovers the PMNS mixing matrix and depends on 3 real parameters:

$$
\begin{equation*}
R=e^{i \phi_{\mu \tau} \lambda_{7}} e^{i \phi_{e \tau} \lambda_{5}} e^{i \phi_{e \mu} \lambda_{2}} \tag{14}
\end{equation*}
$$

where the λ are the Gell-Mann matrices and each $\phi_{i j}$ angle corresponds to the mixing between two neutrino species.

- Observe oscillatory behaviour of 3 flavour neutrinos starting
 from a pure electron-neutrino initial state:

$$
\begin{equation*}
\tilde{\psi}_{k}^{i *}(0)=\frac{1}{\sqrt{n}} \sum_{p=0}^{n-1} e^{-i\left(k-k_{0}\right) x_{p}} \otimes(1,0,0,0,0,0)^{\top} \tag{15}
\end{equation*}
$$

- Time evolution of the probability $P\left(\nu_{\alpha} \rightarrow \nu_{\beta} ; t\right), \beta \in\{e, \tau, \mu\}$ of a 3 flavour neutrino oscillation in vacuum, simulated by a QW shown on right for 200 and 1000 time steps. Values:
$\Delta m^{2}{ }_{e \mu}=0.003 \mathrm{rad}, \Delta m^{2}{ }_{\mu \tau}=0.32 \mathrm{rad}, \Delta m^{2}{ }_{e \tau}=0.31 \mathrm{rad}$, $\phi_{12}=0.34 \mathrm{rad}, \phi_{13}=0.54, \phi_{23}=0.45 \mathrm{rad}$ and $k_{0}=100$.

[Molfetta and Pérez 2016]
- To accommodate matter effects, DTQW modified to:

$$
\begin{equation*}
\Psi_{j+1, p}=V_{p} R\left(\bigoplus_{h=1,2} S Q_{\epsilon}^{h}\right) R^{\dagger} \Psi_{j, p} \tag{16}
\end{equation*}
$$

where a position-dependent phase V_{p} is introduced and:

$$
\begin{equation*}
V_{p}=\operatorname{diag}\left(e^{i \epsilon \rho_{p}}, 1\right) \otimes \mathbb{I}_{2} \tag{17}
\end{equation*}
$$

- Consider one mixing angle and a 2-dimensional matrix R :

$$
R=\left(\begin{array}{cc}
\cos \phi & \sin \phi \tag{18}\\
-\sin \phi & \cos \phi
\end{array}\right) \otimes \mathbb{I}_{2}
$$

- To accommodate matter effects, DTQW modified to:

$$
\begin{equation*}
\Psi_{j+1, p}=V_{p} R\left(\bigoplus_{h=1,2} S Q_{\epsilon}^{h}\right) R^{\dagger} \Psi_{j, p} \tag{16}
\end{equation*}
$$

where a position-dependent phase V_{p} is introduced and:

$$
\begin{equation*}
V_{p}=\operatorname{diag}\left(e^{i \epsilon \rho_{p}}, 1\right) \otimes \mathbb{I}_{2} \tag{17}
\end{equation*}
$$

- Consider one mixing angle and a 2-dimensional matrix R :

$$
R=\left(\begin{array}{cc}
\cos \phi & \sin \phi \tag{18}\\
-\sin \phi & \cos \phi
\end{array}\right) \otimes \mathbb{I}_{2}
$$

- This DTQW recovers Dirac Equation:

$$
\begin{gather*}
i \partial_{t} \tilde{\Psi}(t, x)-\mathcal{H}_{m} \tilde{\Psi}(t, x)=0, \tag{19}\\
\mathcal{H}_{m}=i\left(\sigma_{z} \otimes \mathcal{I}\right) \partial_{x}-\mathcal{M}+\gamma^{5} \mathbb{I}_{4} \rho(x) \tag{20}
\end{gather*}
$$

with $\gamma^{5}=\frac{1}{2}\left(1+\sigma_{z}\right)$.

- To accommodate matter effects, DTQW modified to:

$$
\begin{equation*}
\Psi_{j+1, p}=V_{p} R\left(\bigoplus_{h=1,2} S Q_{\epsilon}^{h}\right) R^{\dagger} \Psi_{j, p} \tag{16}
\end{equation*}
$$

where a position-dependent phase V_{p} is introduced and:

$$
\begin{equation*}
V_{p}=\operatorname{diag}\left(e^{i \epsilon \rho_{p}}, 1\right) \otimes \mathbb{I}_{2} \tag{17}
\end{equation*}
$$

- Consider one mixing angle and a 2-dimensional matrix R :

$$
R=\left(\begin{array}{cc}
\cos \phi & \sin \phi \tag{18}\\
-\sin \phi & \cos \phi
\end{array}\right) \otimes \mathbb{I}_{2}
$$

- This DTQW recovers Dirac Equation:

$$
\begin{gather*}
i \partial_{t} \tilde{\Psi}(t, x)-\mathcal{H}_{m} \tilde{\Psi}(t, x)=0, \tag{19}\\
\mathcal{H}_{m}=i\left(\sigma_{z} \otimes \mathcal{I}\right) \partial_{x}-\mathcal{M}+\gamma^{5} \mathbb{I}_{4} \rho(x) \tag{20}
\end{gather*}
$$

with $\gamma^{5}=\frac{1}{2}\left(1+\sigma_{z}\right)$.

The QW can mimic the time evolution of 2 neutrino flavours in matter with a linear density and for $\gamma_{r} \ll 1$ in 125 time steps. The dashed line (black) represents the asymptotic crossing probability for different adiabaticity parameters γ_{r}.

Some more comments on QWs

- QWs can be reframed as a one particle sector Quantum Cellular Automaton.

Some more comments on QWs

- QWs can be reframed as a one particle sector Quantum Cellular Automaton.
- QWs are universal for Quantum Computation.

Some more comments on QWs

- QWs can be reframed as a one particle sector Quantum Cellular Automaton.
- QWs are universal for Quantum Computation.
- Quantum simulation schemes (using QWs) may represent a paradigm shift (Feynman 1980s).

Some more comments on QWs

- QWs can be reframed as a one particle sector Quantum Cellular Automaton.
- QWs are universal for Quantum Computation.
- Quantum simulation schemes (using QWs) may represent a paradigm shift (Feynman 1980s).
- QWs can be used to develop stable numerical schemes, even for classical computers.
- QWs can be reframed as a one particle sector Quantum Cellular Automaton.
- QWs are universal for Quantum Computation.
- Quantum simulation schemes (using QWs) may represent a paradigm shift (Feynman 1980s).
- QWs can be used to develop stable numerical schemes, even for classical computers.
- QWs extremely useful for simulating simple discrete toy models of physical phenomena that preserves symmetries, so important for tackling foundational questions in Physics.

Conclusion, Parting Thoughts and Future Directions

- Tools from QIT like Quantum Walks can help us dig deeper into the nature of neutrinos.

Conclusion, Parting Thoughts and Future Directions

- Tools from QIT like Quantum Walks can help us dig deeper into the nature of neutrinos.
- Framework already extended for Dirac Neutrinos in curved spacetime by Arindam Mallick in arXiv:1901.04014v1.

Conclusion, Parting Thoughts and Future Directions

- Tools from QIT like Quantum Walks can help us dig deeper into the nature of neutrinos.
- Framework already extended for Dirac Neutrinos in curved spacetime by Arindam Mallick in arXiv:1901.04014v1.
- Extensions to incorporate NSI, Majorana neutrinos, and seesaw mechanism are open problems.

Conclusion, Parting Thoughts and Future Directions

- Tools from QIT like Quantum Walks can help us dig deeper into the nature of neutrinos.
- Framework already extended for Dirac Neutrinos in curved spacetime by Arindam Mallick in arXiv:1901.04014v1.
- Extensions to incorporate NSI, Majorana neutrinos, and seesaw mechanism are open problems.
- Questions?

