Quantum Walks and Neutrinos

Farhan Tanvir Chowdhury

Quantum Structures, Information and Control Aberystwyth University

PASCOS 2019 Schuster Building, The University of Manchester

Quantum Walks and Neutrinos

Farhan Tanvir Chowdhury

イロト イポト イヨト イヨト

э

Quantum Walks: What and why?

Quantum Analogue of Classical Random Walks

• **Classical**: Walker traverses path formed of fixed random shifts (say ± 1 , depending on coin flip) on some space.

Quantum Walks: What and why?

Quantum Analogue of Classical Random Walks

- **Classical**: Walker traverses path formed of fixed random shifts (say ± 1 , depending on coin flip) on some space.
- **Quantum:** Walker traverses path formed of <u>superposition</u> of random shifts on some composite \mathcal{H} based on flipping quantum coin, typical basis: $|\uparrow\rangle = (1,0)^T$ and $|\downarrow\rangle = (0,1)^T$.

Quantum Walks: What and why?

Quantum Analogue of Classical Random Walks

- **Classical**: Walker traverses path formed of fixed random shifts (say ±1, depending on coin flip) on some space.
- **Quantum:** Walker traverses path formed of <u>superposition</u> of random shifts on some composite \mathcal{H} based on flipping quantum coin, typical basis: $|\uparrow\rangle = (1,0)^T$ and $|\downarrow\rangle = (0,1)^T$.

Quantum Walks (QWs) analogous to Feynman's Checkerboard for 1+1D Dirac Equation:

$$i\hbar\frac{\partial\psi}{\partial t} = mc^2\sigma_x\psi - i\hbar\sigma_z\frac{\partial\psi}{\partial x}$$
(1)

- Feynman's original 1+1D checkerboard has been extended to higher dimensions, and **also used** to simulate neutrino mixing and neutrino oscillations by Petr Jizba in 2015 paper.
- QWs very useful for simulating relativistic quantum phenomena, like Graphene Carrier Density and **Relativistic Transport**.

イロト イポト イヨト イヨト

Checkerboard Diagram Source and Peter Jizba's 2015 Paper DOI: 10.1088/1742-6596/626/1/012048

• Continuous Time Quantum Walk (CTQWs): Apply unitary operator e^{-iAt} on some graph G with adjacency matrix A.

- Continuous Time Quantum Walk (CTQWs): Apply unitary operator e^{-iAt} on some graph G with adjacency matrix A.
- **Discrete Time Quantum Walk (DTQWs)**: Repeat quantum coin flip, particle shifts left/right on $\mathcal{H} = \mathcal{H}_c \otimes \mathcal{H}_x$, depending on coin being head/tails.

- Continuous Time Quantum Walk (CTQWs): Apply unitary operator e^{-iAt} on some graph G with adjacency matrix A.
- **Discrete Time Quantum Walk (DTQWs)**: Repeat quantum coin flip, particle shifts left/right on $\mathcal{H} = \mathcal{H}_c \otimes \mathcal{H}_x$, depending on coin being head/tails.

Particle starts at origin denoted by position state $|0\rangle$ and if quantum coin is set as:

$$\begin{array}{ccc} \cos\epsilon & -i\sin\epsilon \\ -i\sin\epsilon & \cos\epsilon \end{array} \right), \tag{2}$$

Then for $\epsilon \rightarrow 0$, it has been shown (rigorously) that we can recover the Dirac Equation:

$$(i\gamma^{\mu}\partial_{\mu}+m)\psi=0 \tag{3}$$

イロト イポト イヨト イヨト

- Continuous Time Quantum Walk (CTQWs): Apply unitary operator e^{-iAt} on some graph G with adjacency matrix A.
- **Discrete Time Quantum Walk (DTQWs)**: Repeat quantum coin flip, particle shifts left/right on $\mathcal{H} = \mathcal{H}_c \otimes \mathcal{H}_x$, depending on coin being head/tails.

Particle starts at origin denoted by position state $|0\rangle$ and if quantum coin is set as:

$$\cos \epsilon -i\sin \epsilon \ -i\sin \epsilon \),$$

Then for $\epsilon \rightarrow 0$, it has been shown (rigorously) that we can recover the Dirac Equation:

$$(i\gamma^{\mu}\partial_{\mu}+m)\psi=0 \tag{3}$$

イロト イポト イヨト イヨト

(2)

Details in paper by Frederick W. Strauch, doi.org/10.1063/1.2759837.

- Continuous Time Quantum Walk (CTQWs): Apply unitary operator e^{-iAt} on some graph G with adjacency matrix A.
- **Discrete Time Quantum Walk (DTQWs)**: Repeat quantum coin flip, particle shifts left/right on $\mathcal{H} = \mathcal{H}_c \otimes \mathcal{H}_x$, depending on coin being head/tails.

Particle starts at origin denoted by position state $|0\rangle$ and if quantum coin is set as:

 $\begin{pmatrix} \cos\epsilon & -i\sin\epsilon \\ -i\sin\epsilon & \cos\epsilon \end{pmatrix},$

Then for $\epsilon \rightarrow 0$, it has been shown (rigorously) that we can recover the Dirac Equation:

$$(i\gamma^{\mu}\partial_{\mu}+m)\psi=0 \tag{3}$$

(2)

= nan

Details in paper by Frederick W. Strauch, doi.org/10.1063/1.2759837.

In arXiv:quant-ph/0606050, Strauch connects DTQWs to CTQWs.

• Introduced to explain β decay (Pauli 1930)

• Introduced to explain β decay (Pauli 1930), detected by Cowan and Reines (1956).

- Introduced to explain β decay (Pauli 1930), detected by Cowan and Reines (1956).
- SM predicted massless Neutrinos, lead to Solar Neutrino Problem.

- Introduced to explain β decay (Pauli 1930), detected by Cowan and Reines (1956).
- SM predicted massless Neutrinos, lead to Solar Neutrino Problem.
- Massive Neutrinos, Neutrino Mixing and Neutrino Oscillations (Pontecorvo 1957).

- Introduced to explain β decay (Pauli 1930), detected by Cowan and Reines (1956).
- SM predicted massless Neutrinos, lead to Solar Neutrino Problem.
- Massive Neutrinos, Neutrino Mixing and Neutrino Oscillations (Pontecorvo 1957).
- Solar Neutrino Problem resolution demonstrated above, and inadequacies of SM.

- Introduced to explain β decay (Pauli 1930), detected by Cowan and Reines (1956).
- SM predicted massless Neutrinos, lead to Solar Neutrino Problem.
- Massive Neutrinos, Neutrino Mixing and Neutrino Oscillations (Pontecorvo 1957).
- Solar Neutrino Problem resolution demonstrated above, and inadequacies of SM.
- Exact Neutrino field nature (Majorana/Dirac) is still open.

- Introduced to explain β decay (Pauli 1930), detected by Cowan and Reines (1956).
- SM predicted massless Neutrinos, lead to Solar Neutrino Problem.
- Massive Neutrinos, Neutrino Mixing and Neutrino Oscillations (Pontecorvo 1957).
- Solar Neutrino Problem resolution demonstrated above, and inadequacies of SM.
- Exact Neutrino field nature (Majorana/Dirac) is still open.
- Only left handed (Dirac) neutrinos interact within SM, and we consider these.

イロト イポト イヨト イヨト

- Introduced to explain β decay (Pauli 1930), detected by Cowan and Reines (1956).
- SM predicted massless Neutrinos, lead to Solar Neutrino Problem.
- Massive Neutrinos, Neutrino Mixing and Neutrino Oscillations (Pontecorvo 1957).
- Solar Neutrino Problem resolution demonstrated above, and inadequacies of SM.
- Exact Neutrino field nature (Majorana/Dirac) is still open.
- Only left handed (Dirac) neutrinos interact within SM, and we consider these.
- We now look at simulating (using DTQWs) standard neutrino oscillations in matter, using framework of Molfetta et al (arXiv:1607.00529v2).

イロト イポト イヨト イヨト

• Introduce flavour states $\tilde{\Psi}_{\alpha}$ ($\alpha = e, \mu, \tau$) related to the mass eigenstates by unitary transformation:

$$\tilde{\Psi}_{\alpha}(t,x) = \sum_{i} R_{\alpha i} \Psi_{i}(t,x), \qquad (4)$$

where $\Psi_i(t, x)$ is the neutrino field with mass m_i .

• Introduce flavour states $\tilde{\Psi}_{\alpha}$ ($\alpha = e, \mu, \tau$) related to the mass eigenstates by unitary transformation:

$$\tilde{\Psi}_{\alpha}(t,x) = \sum_{i} R_{\alpha i} \Psi_{i}(t,x), \qquad (4)$$

where $\Psi_i(t, x)$ is the neutrino field with mass m_i .

• Suppose $|\nu_{\alpha}\rangle$ produced at t = 0, then at t the neutrino state evolves according to

$$|\nu_{\alpha}\rangle_{t} = \boldsymbol{e}^{-iHt} \sum_{i=1}^{3} \boldsymbol{R}_{\alpha i}^{*} |\nu_{i}\rangle = \sum_{i} |\nu_{i}\rangle \boldsymbol{e}^{-i\boldsymbol{E}_{i}t} \boldsymbol{R}_{\alpha i}^{*}.$$
(5)

• Introduce flavour states $\tilde{\Psi}_{\alpha}$ ($\alpha = e, \mu, \tau$) related to the mass eigenstates by unitary transformation:

$$\tilde{\Psi}_{\alpha}(t,x) = \sum_{i} R_{\alpha i} \Psi_{i}(t,x), \qquad (4)$$

where $\Psi_i(t, x)$ is the neutrino field with mass m_i .

• Suppose $|\nu_{\alpha}\rangle$ produced at t = 0, then at t the neutrino state evolves according to

$$|\nu_{\alpha}\rangle_{t} = \boldsymbol{e}^{-iHt} \sum_{i=1}^{3} \boldsymbol{R}_{\alpha i}^{*} |\nu_{i}\rangle = \sum_{i} |\nu_{i}\rangle \boldsymbol{e}^{-i\boldsymbol{E}_{i}t} \boldsymbol{R}_{\alpha i}^{*}.$$
(5)

So at *t*, the initial neutrino can be detected as any flavour ν_{β} with R being:

$$\boldsymbol{R} = \begin{pmatrix} \cos\phi_{12} & \sin\phi_{12} \\ -\sin\phi_{12} & \cos\phi_{12} \end{pmatrix}$$
(6)

イロト イポト イヨト イヨト

and ϕ_{12} being the mixing angle.

• Introduce flavour states $\tilde{\Psi}_{\alpha}$ ($\alpha = e, \mu, \tau$) related to the mass eigenstates by unitary transformation:

۱

$$\tilde{\Psi}_{\alpha}(t,x) = \sum_{i} R_{\alpha i} \Psi_{i}(t,x), \qquad (4)$$

where $\Psi_i(t, x)$ is the neutrino field with mass m_i .

• Suppose $|\nu_{\alpha}\rangle$ produced at t = 0, then at t the neutrino state evolves according to

$$|\nu_{\alpha}\rangle_{t} = \boldsymbol{e}^{-iHt} \sum_{i=1}^{3} \boldsymbol{R}_{\alpha i}^{*} |\nu_{i}\rangle = \sum_{i} |\nu_{i}\rangle \boldsymbol{e}^{-i\boldsymbol{E}_{i}t} \boldsymbol{R}_{\alpha i}^{*}.$$
(5)

So at *t*, the initial neutrino can be detected as any flavour ν_{β} with R being:

$$\boldsymbol{R} = \begin{pmatrix} \cos\phi_{12} & \sin\phi_{12} \\ -\sin\phi_{12} & \cos\phi_{12} \end{pmatrix}$$
(6)

and ϕ_{12} being the mixing angle.

• The transition probability for $\nu_{\alpha} \rightarrow \nu_{\beta}$:

$$P(\nu_{\alpha} \to \nu_{\beta}; t) = \left|\sum_{i=1}^{3} R_{\beta i} \ e^{-iE_{i} \ t} \ R_{\alpha i}^{*}\right|^{2}$$

$$\tag{7}$$

イロン イボン イヨン イヨン

• Consider QW acting on Hilbert space $\mathcal{H} = \mathcal{H}_{spin} \otimes \mathcal{H}_n$ with \mathcal{H}_n describing n-flavour Hilbert space of the walker

• Consider QW acting on Hilbert space $\mathcal{H} = \mathcal{H}_{spin} \otimes \mathcal{H}_n$ with \mathcal{H}_n describing n-flavour Hilbert space of the walker, with evolution equations:

$$\begin{bmatrix} \psi_{j+1,\rho}^{1} \\ \dots \\ \psi_{j+1,\rho}^{n} \end{bmatrix} = \left(\bigoplus_{h=1,n} SQ_{\epsilon}^{h} \right) \begin{bmatrix} \psi_{j,\rho}^{1} \\ \dots \\ \psi_{j,\rho}^{n} \end{bmatrix}$$
(8)

• Consider QW acting on Hilbert space $\mathcal{H} = \mathcal{H}_{spin} \otimes \mathcal{H}_n$ with \mathcal{H}_n describing n-flavour Hilbert space of the walker, with evolution equations:

$$\begin{bmatrix} \psi_{j+1,\rho}^{1} \\ \dots \\ \psi_{j+1,\rho}^{n} \end{bmatrix} = \left(\bigoplus_{h=1,n} SQ_{\epsilon}^{h} \right) \begin{bmatrix} \psi_{j,\rho}^{1} \\ \dots \\ \psi_{j,\rho}^{n} \end{bmatrix}$$
(8)

• *S* is a spin-dependent translation operator and Q_{ϵ}^{h} is the quantum coin:

$$Q_{\epsilon}^{h} = \begin{pmatrix} \cos(\epsilon\theta_{h}) & i\sin(\epsilon\theta_{h}) \\ i\sin(\epsilon\theta_{h}) & \cos(\epsilon\theta_{h}) \end{pmatrix}$$
(9)

イロン イボン イヨン イヨン

with θ_h corresponding to fermionic mass.

• Consider QW acting on Hilbert space $\mathcal{H} = \mathcal{H}_{spin} \otimes \mathcal{H}_n$ with \mathcal{H}_n describing n-flavour Hilbert space of the walker, with evolution equations:

$$\begin{bmatrix} \psi_{j+1,\rho}^{1} \\ \dots \\ \psi_{j+1,\rho}^{n} \end{bmatrix} = \left(\bigoplus_{h=1,n} SQ_{\epsilon}^{h} \right) \begin{bmatrix} \psi_{j,\rho}^{1} \\ \dots \\ \psi_{j,\rho}^{n} \end{bmatrix}$$
(8)

• *S* is a spin-dependent translation operator and Q_{ϵ}^{h} is the quantum coin:

$$Q_{\epsilon}^{h} = \begin{pmatrix} \cos(\epsilon\theta_{h}) & i\sin(\epsilon\theta_{h}) \\ i\sin(\epsilon\theta_{h}) & \cos(\epsilon\theta_{h}) \end{pmatrix}$$
(9)

with θ_h corresponding to fermionic mass.

• Introducing a unitary transformation R analogous to earlier slide, we get:

$$\tilde{\Psi}_{j+1,p} = R\left(\bigoplus_{h=1,n} SQ^{h}_{\epsilon}\right) R^{\dagger} \tilde{\Psi}_{j,p}$$
(10)

イロン イボン イヨン イヨン

• Assuming existence of a continuous limit imposes following constraint on the coin:

$$\lim_{\epsilon \to 0} \left[R\left(\bigoplus_{h=1,n} SQ^h_{\epsilon} \right) R^{\dagger} \right] = I_{2n}.$$
(11)

with $Q^i = I_2$ as $\epsilon \to 0$ and $RR^{\dagger} = I_{2n}$ by definition.

• Assuming existence of a continuous limit imposes following constraint on the coin:

$$\lim_{t\to 0} \left[R\left(\bigoplus_{h=1,n} SQ^h_{\epsilon}\right) R^{\dagger} \right] = I_{2n}.$$
(11)

with $Q^i = I_2$ as $\epsilon \to 0$ and $RR^{\dagger} = I_{2n}$ by definition.

• With above, the DTQW recovers standard Dirac Equations of the form:

$$\left[\partial_t - \left(\bigoplus_{h=1,n} \sigma_z\right) \partial_x - i\mathcal{M}\right] \tilde{\Psi}(t,x) = 0, \tag{12}$$

イロト イポト イヨト イヨト

describing relativistic n-flavour neutrinos in 1+1D.

• Assuming existence of a continuous limit imposes following constraint on the coin:

$$\lim_{t\to 0} \left[R\left(\bigoplus_{h=1,n} SQ^h_{\epsilon}\right) R^{\dagger} \right] = I_{2n}.$$
(11)

with $Q^i = I_2$ as $\epsilon \to 0$ and $RR^{\dagger} = I_{2n}$ by definition.

With above, the DTQW recovers standard Dirac Equations of the form:

$$\left[\partial_t - \left(\bigoplus_{h=1,n} \sigma_z\right) \partial_x - i\mathcal{M}\right] \tilde{\Psi}(t,x) = 0, \tag{12}$$

describing relativistic n-flavour neutrinos in 1+1D.

• For 3 flavour neutrinos, the corresponding transition probability can be derived as:

$$P(\nu_{\alpha} \to \nu_{\beta}; t) = |\sum_{k} \tilde{\psi}_{k}^{\alpha*}(0) \tilde{\psi}_{k}^{\beta}(t)|^{2}.$$
(13)

イロト イポト イヨト イヨト

Simulation Example: Vacuum Neutrinos

• Consider $\{e, \mu, \tau\}$ generations in vacuum, for which R recovers the PMNS mixing matrix and depends on 3 real parameters:

$$\boldsymbol{R} = \boldsymbol{e}^{i\phi_{\mu\tau}\lambda_7} \boldsymbol{e}^{i\phi_{e\tau}\lambda_5} \boldsymbol{e}^{i\phi_{e\mu}\lambda_2} \tag{14}$$

where the λ are the Gell-Mann matrices and each ϕ_{ij} angle corresponds to the mixing between two neutrino species.

Simulation Example: Vacuum Neutrinos

• Consider $\{e, \mu, \tau\}$ generations in vacuum, for which R recovers the PMNS mixing matrix and depends on 3 real parameters:

$$\boldsymbol{R} = \boldsymbol{e}^{i\phi_{\mu\tau}\lambda_7} \boldsymbol{e}^{i\phi_{e\tau}\lambda_5} \boldsymbol{e}^{i\phi_{e\mu}\lambda_2} \tag{14}$$

where the λ are the Gell-Mann matrices and each ϕ_{ij} angle corresponds to the mixing between two neutrino species.

• Observe oscillatory behaviour of 3 flavour neutrinos starting from a pure electron-neutrino initial state:

$$\tilde{\psi}_{k}^{i_{*}}(0) = \frac{1}{\sqrt{n}} \sum_{\rho=0}^{n-1} e^{-i(k-k_{0})x_{\rho}} \otimes (1,0,0,0,0,0)^{\top}$$
(15)

イロト イポト イヨト イヨト

Simulation Example: Vacuum Neutrinos

• Consider $\{e, \mu, \tau\}$ generations in vacuum, for which R recovers the PMNS mixing matrix and depends on 3 real parameters:

$$R = e^{i\phi_{\mu\tau}\lambda_7} e^{i\phi_{e\tau}\lambda_5} e^{i\phi_{e\mu}\lambda_2}$$
(14)

where the λ are the Gell-Mann matrices and each ϕ_{ij} angle corresponds to the mixing between two neutrino species.

• Observe oscillatory behaviour of 3 flavour neutrinos starting from a pure electron-neutrino initial state:

$$\tilde{\psi}_{k}^{i*}(0) = \frac{1}{\sqrt{n}} \sum_{\rho=0}^{n-1} e^{-i(k-k_{0})x_{\rho}} \otimes (1,0,0,0,0,0)^{\top}$$
(15)

• Time evolution of the probability $P(\nu_{\alpha} \rightarrow \nu_{\beta}; t)$, $\beta \in \{e, \tau, \mu\}$ of a 3 flavour neutrino oscillation in vacuum, simulated by a QW shown on right for 200 and 1000 time steps. **Values:** $\Delta m^2_{e\mu} = 0.003 \text{ rad}, \Delta m^2_{\mu\tau} = 0.32 \text{ rad}, \Delta m^2_{e\tau} = 0.31 \text{ rad}, \phi_{12} = 0.34 \text{ rad}, \phi_{13} = 0.54, \phi_{23} = 0.45 \text{ rad} \text{ and } k_0 = 100.$

• To accommodate matter effects, DTQW modified to:

$$\Psi_{j+1,p} = V_{p} R \left(\bigoplus_{h=1,2} S Q_{\epsilon}^{h} \right) R^{\dagger} \Psi_{j,p}, \qquad (16)$$

where a position-dependent phase V_{ρ} is introduced and:

$$V_{\rho} = \operatorname{diag}(e^{i\epsilon\rho_{\rho}}, 1) \otimes \mathbb{I}_{2}$$
(17)

• Consider one mixing angle and a 2-dimensional matrix *R*:

$$\boldsymbol{R} = \begin{pmatrix} \cos\phi & \sin\phi \\ -\sin\phi & \cos\phi \end{pmatrix} \otimes \mathbb{I}_2$$
(18)

・ロン・西・・ヨン・ヨー ひん

• To accommodate matter effects, DTQW modified to:

$$\Psi_{j+1,p} = V_{p}R\left(\bigoplus_{h=1,2}SQ_{\epsilon}^{h}\right)R^{\dagger}\Psi_{j,p},$$
 (16)

where a position-dependent phase V_{ρ} is introduced and:

$$V_{\rho} = \operatorname{diag}(e^{i\epsilon\rho_{\rho}}, 1) \otimes \mathbb{I}_{2}$$
(17)

• Consider one mixing angle and a 2-dimensional matrix *R*:

$$\boldsymbol{R} = \begin{pmatrix} \cos\phi & \sin\phi \\ -\sin\phi & \cos\phi \end{pmatrix} \otimes \mathbb{I}_2 \tag{18}$$

• This DTQW recovers Dirac Equation:

$$i\partial_t \tilde{\Psi}(t,x) - \mathcal{H}_m \tilde{\Psi}(t,x) = 0, \qquad (19)$$

$$\mathcal{H}_{m} = i (\sigma_{z} \otimes \mathcal{I}) \partial_{x} - \mathcal{M} + \gamma^{5} \mathbb{I}_{4} \rho(x)$$
(20)

with $\gamma^{5} = \frac{1}{2}(1 + \sigma_{z})$.

イロト イポト イヨト イヨト

• To accommodate matter effects, DTQW modified to:

$$\Psi_{j+1,\rho} = V_{\rho} R \left(\bigoplus_{h=1,2} SQ^{h}_{\epsilon} \right) R^{\dagger} \Psi_{j,\rho}, \qquad (16)$$

where a position-dependent phase V_{ρ} is introduced and:

$$V_{\rho} = \operatorname{diag}(e^{i\epsilon\rho_{\rho}}, 1) \otimes \mathbb{I}_{2}$$
(17)

• Consider one mixing angle and a 2-dimensional matrix R:

$$R = \begin{pmatrix} \cos\phi & \sin\phi \\ -\sin\phi & \cos\phi \end{pmatrix} \otimes \mathbb{I}_2$$
(18)

• This DTQW recovers Dirac Equation:

$$i\partial_t \tilde{\Psi}(t,x) - \mathcal{H}_m \tilde{\Psi}(t,x) = 0,$$

$$\mathcal{H}_m = i \left(\sigma_z \otimes \mathcal{I} \right) \partial_x - \mathcal{M} + \gamma^5 \mathbb{I}_4 \rho(x)$$

with $\gamma^5 = \frac{1}{2}(1 + \sigma_z)$.

The QW can mimic the time evolution of 2 neutrino flavours in matter with a linear density and for $\gamma_r \ll 1$ in 125 time steps. The dashed line (black) represents the asymptotic crossing probability for different adiabaticity parameters γ_r .

イロト イポト イヨト イヨト

(19)

(20)

• QWs can be reframed as a one particle sector Quantum Cellular Automaton.

- QWs can be reframed as a one particle sector Quantum Cellular Automaton.
- QWs are universal for Quantum Computation.

- QWs can be reframed as a one particle sector Quantum Cellular Automaton.
- QWs are universal for Quantum Computation.
- Quantum simulation schemes (using QWs) may represent a paradigm shift (Feynman 1980s).

- QWs can be reframed as a one particle sector Quantum Cellular Automaton.
- QWs are universal for Quantum Computation.
- Quantum simulation schemes (using QWs) may represent a paradigm shift (Feynman 1980s).
- QWs can be used to develop stable numerical schemes, even for classical computers.

- QWs can be reframed as a one particle sector Quantum Cellular Automaton.
- QWs are universal for Quantum Computation.
- Quantum simulation schemes (using QWs) may represent a paradigm shift (Feynman 1980s).
- QWs can be used to develop stable numerical schemes, even for classical computers.
- QWs extremely useful for simulating simple discrete toy models of physical phenomena that preserves symmetries, so important for tackling foundational questions in Physics.

イロト イポト イヨト イヨト

3

Tools from QIT like Quantum Walks can help us dig deeper into the nature of neutrinos.

- Tools from QIT like Quantum Walks can help us dig deeper into the nature of neutrinos.
- Framework already extended for Dirac Neutrinos in curved spacetime by Arindam Mallick in arXiv:1901.04014v1 .

- Tools from QIT like Quantum Walks can help us dig deeper into the nature of neutrinos.
- Framework already extended for Dirac Neutrinos in curved spacetime by Arindam Mallick in arXiv:1901.04014v1 .
- Extensions to incorporate NSI, Majorana neutrinos, and seesaw mechanism are open problems.

- Tools from QIT like Quantum Walks can help us dig deeper into the nature of neutrinos.
- Framework already extended for Dirac Neutrinos in curved spacetime by Arindam Mallick in arXiv:1901.04014v1 .
- Extensions to incorporate NSI, Majorana neutrinos, and seesaw mechanism are open problems.
- Questions?