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Cosmological History

Always Expanding?



Usually, yes.

For a flat universe,

ds* = —dt* + a*(t)dx?

Friedmann eq. p
H* = =
3

(reduced Planck unit: 87G = 1)

Hubble parameter

N

H(t) = %

Q

As longas p > 0, it keeps expanding.



Universe can contract

If p— 0 (i.e., H =0) is realized, the universe starts to contract.

: 1
H:—§(P+P)

Null Energy Condition (NEC): p + P > 0

For example,
it is possible for the scalar field with a negative potential.

However, it keeps contracting,

v X0 eventually leading to a big crunch.

[Linde, hep-th/0110195] [Felder et al., hep-th/0202017]
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Negative Potential

Standard Model Supergravity String Landscape
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Negative Potential

Standard Model Supergravity String Landscape

Once the universe enters the negative region,

Is the Big Crunch unavoidable?

9jols C 20TV,

200 t

(cf. Swampland de Sitter conjecture)
[Obied et al., 1806.08362]

[Buttazzo et al., 1307.3536] figure from [Kallosh et al., 1808.09428]



Spatial Curvature

Friedmann-Lemaitre-Robertson-Walker metric

ds* = —dt* + a” (1)

HZ:’O IC
3 a?
1

H=——(p+ P)

11— Kr?

dr?

J

spatial curvature
positive (closed), zero (flat), or negative (open)

- (d92 + sin” 9dgp2)




Spatial Curvature

Friedmann-Lemaitre-Robertson-Walker metric

dr?
11— Kr?

J

spatial curvature
positive (closed), zero (flat), or negative (open)

-2 (d92 + sin” 9dgp2)

Contraction = Expansion is possible.

KC simple example of a “bounce”
H2 L P
3 2 p=—P = A (cosmological constant)
K >0

: 1 K 3K A
H = —§(p—|—P) | " a(t):\Ecosh (\/%15)
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Expansion, Contraction, and Expansion Again




Einstein Gravity & a Scalar Field

Action , .
S = /d4x\/—g <§R — §guyau¢au¢ — V(@)
Egs. of motion Scalar Potential
flatter flatter
1, K
H=-2¢"+—.
. : 3V(¢)
+ 3H o - =0. >
¢ ¢ O \>§ ¢
negative part




1. Initial Expansion Phase

Egs. of motion Scalar Potential
flatter
1 /1. K s
H?* == =¢° — — |
: 1. iC
H=—-¢°"+—
ng * a2’
. : 8V(¢)
3Ho - = 0. >
¢+3HS+—5, &

negative part

K -
Suppose p > o > 0 initially.
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2. Contraction Phase

Egs. of motion Scalar Potential

1 /1. )C

H2 _ =2 I
s (584 ve) - 5

: 1. iC

H=—-¢°+—
ng * a2’

. . OV

d+ 3Ho - (9) _ 0.

O N
\ negative part

During contraction, H < 0 works as anti-friction.



2. Contraction Phase

Egs. of motion Scalar Potential
1 /1. )C
H2 _ =2 V I
s (584 ve) - 5
: 1. K
H=—-¢°+—
ng * a2’

b+ 3Hb A Vo) _q.

O %%Q
\ negative part

During contraction, H < 0 works as anti-friction.




2. Contraction Phase

Egs. of motion Scalar Potential
]. ]_ '2 ]C
. 1., KC
H=—2¢"+—.
V()
Ho - = 0.
o+ 3Ho 9 0

\)Q
\ negative part

During contraction, H < 0 works as anti-friction.

If the Kinetic energy is sufficiently suppressed on the plateau,
the positive curvature can make the universe expand again.




3. Second Expansion Phase

Egs. of motion

2oL
3

. 1

H=_=-
9

b+ 3Ho -

(36 +7v(@) -
. K
?7
V() _
96 = 0.

Scalar Potential

negative part

The flat part of the potential, built in for the bounce purpose,
lets the universe naturally enter the slow-roll inflationary regime.

The resultant cosmology can be consistent with observation.
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Example Model



Example Model

Scalar potential Numerical results
s s a=1 B=0, ~=-0.09143
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Possible origin of the positive curvature



Birth of Closed Universe

Mini-superspace approximation

Wave function of the universe: V(g (t,x), ¢(t,x)] = Y[a(t), ¢(t)]

Wheeler-De Whit eq.

H(a, p)¥(a,¢) =0

where
2
H(a, ) = 121a2 8@@ (a%) B Qig aa¢2 — Ul(a, @) [Kiefer, Sandhoefer, 0804.0672]
3IC 2 — ]
Ula.0) =a* (% -V (@) N
" |
Initial conditions [vilenkin, PRD37, 888 (1988)] § -1
2t 5
[ 3K _3f ]
a(0) =4 —— a(0) =0 E z
(0) V (¢) ( ) R ]

#(0) =const. $(0) =0 aNKIV



Birth of Closed Universe

Mini-superspace approximation

Wave function of the universe: V(g (t,x), ¢(t,x)] = Y[a(t), ¢(t)]

Wheeler-De Whit eq.

H(a, p)¥(a,¢) =0

where
1 0 0 1 0? |
H(a’ qﬁ) — 1922 Da (a%) — 503 (9qb2 — U(a, qb) [Kiefer, Sandhoefer, 0804.0672]
3KC 2t ]
U(aa ):a,3 <a2—v(¢)) 1/\
"
Initial conditions [vilenkin, PRD37, 888 (1988)] §—1 \ |
3K . “Creation of the universe from nothing”
a(0) =4/ —— a(0) =0 o
V(9) -4 [Vilenkin, PLB117,25 (1982] \
0.0 0.5 1.0 1.5 2.0

¢»(0) =const. $(0) =0
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Summary & Conclusion

We find new nontrivial cosmological solutions.

- (Creation from Nothing —) Expansion — Contraction — Inflationary Expansion
- (Creation from Nothing —) Cyclic

4dim, Einsteing gravity, a real canonical scalar.
No violation of Null Energy Condition. No singularity.

Our solutions open interesting possibilities
for General Relativity and Our Universe (past and future).

Many things to be explored.
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Dynamics of Scalar Field

approximation regime relevance
.. Nofriction”
O+ 3HD+ oV(9) =0 ° I’IC-’EIOIjl . relevant around H=0
O e.g.) oscillation
/—I— SHO | ov(e) 0 “Slow-Roll regime” attractor solution
3 o Potential energy dominate. | during expansion
. OV “Ultra-Slow-Roll regime” attractor solution
O+ 3Hp + =0 5 : i
0o Kinetic energy is important. | during contraction

..........................................................................................................................................................................................................................

“Scaling solution”
0P (special situation)




Dynamics of Scalar Field

approximation

regime

relevance

6+ 36+ T —

“No friction”
e.qg.) oscillation

.......................................................................

“Slow-Roll regime”

Potential energy dominate.
“Ultra-Slow-Roll regime” |

Kinetic energy is important.

.......................................................................

“Scaling solution”
(special situation)

relevant around H=0

......................................................................

attractor solution
during expansion

......................................................................

attractor solution
during contraction

.........................................................



Tuning of the offset

a=1 B=0, ~=-0.09143
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Tuning of the left-right asymmetry
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Tuning of the width

a=0.8924, B=0, ~v=-0.1
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Birth of Closed Universe

Initial conditions [vienkin, PRD37, 888 (1988)]

a(0) =, /VBT];) 4(0) =0

¢»(0) =const. $(0) =0

AN

How this is determined is controversial.

Two proposals [Vilenkin, PRD37, 888 (1988)]
for nucleation probability

247‘(’2M€§ ) [Vilenkin, PRD30, 509 (1984)]

SN ELL

[Hartle, Hawking, PRD28, 2960 (1983)]
“no-boundary proposal”

Even if the universe is born with tiny energy density by the Hartle-Hawking process,
the energy density can increase in the contraction phase, which makes the scenario viable.



Cyclic solution

Scalar potential

¢ ] [ 0 ] ) Numerical results
V(d) =V, [ tanh® | — | + Btanh | — | +
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Initial conditions for numerical calculation

o0 =\ W0 =0 6(0) = —3vBa  4(0) =0

(Details in the next slide)



Scale factor
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a(n)/a(0)

a(n)/a(0)

Cyclic solution
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Mechanism of Cycles

Coarse graining oscillations of the scalar field

Wave — <w> 0SC

Wave oscillates around -1/3.

-0.04 -0.02 0.00 0.02 0.04
¢
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Discussion

Not restricted to our past. It may occur in future.

Tuning is necessary. Anthropic justification?

Eternal inflation or “just enough” inflation. Observable effects?
CMB data slightly favor positive curvature. It can relax the H_0 tension.
In contrast with bubble universes in the string landscape.
Vacuum energy can change during the contraction phase.

Bounce at an arbitrarily higher energy scale may be possible.



Constraints on Curvature

Qi = —0.05610075  (68%, Planck TT+lowE)

Qi = —0.044779018 (68%, Planck TT,TE,EE-+lowE)

O = —0.0106 £ 0.0065 (68%, Planck TT,TE,EE+lowE+lensing)

Qi = 0.0007 £ 0.0019 (68%, Planck TT,TE,EE+lowE+lensing+BAO)
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[Planck collaboration 2018: Cosmological parameters] [Riess, Casertano, Yuan, Macri, Scolnic, 1903.07603]



Uplifting Vacuum Energy

Potentlal of light (axionic) field
Another minimum for ¢
may not be necessary. [\

VVVUVV

[Graham, Kaplan, Rajendran, 1902.06793]




Uplifting Vacuum Energy

Potentlal of light (axionic) field

Another minimum for ¢
may not be necessary. /\ /\ [\
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Uplifting Vacuum Energy

Potentlal of light (axionic) field
Another minimum for ¢
may not be necessary. /\ [\

[Graham, Kaplan, Rajendran, 1902.06793]

>

Uplift of the cosmological constant is possible.



Increase Energy before Bounce

Dynamics of Scalar Field Kinetic-potential scaling solution
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Increase Energy before Bounce

Dynamics of Scalar Field Kinetic-potential scaling solution

approximation regime relevance 1 ° 2
. V() “No friction” t ‘ / t
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()(D Potential energy dominate. during expansion
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b Kinetic energy is important.  during contraction
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Increase Energy before Bounce

Dynamics of Scalar Field Kinetic-potential scaling solution

approximation regime relevance 1 ° 2
. AL “No friction” t ‘ / t
. / H= J—
&+ 3HO + 96 0 6.) oscillation relevant around H=0 O(
/+ 3HS + av(e) 0 “Slow-Roll regime” attractor solut .ion 2
O(D Potential energy dominate. = durin g expansion

s V(9) ~ exp (—v/3(1+ w)o)

- bounce
. around here

. (w < -1/3)

inflation

This may be useful for
: the Hartle-Hawking
¢ “no-boundary” scenario.
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What is new?

To best of our knowledge, our scenarios are the first bouncing/cyclic
scenarios satisfying the following conditions.

Conditions (common)
(A) 4d Einstein gravity,
FLRW universe with positive spatial curvature,

(B) No violation of null energy condition,
No singularity

conditions for “*N-shaped” bouncing scenario
(1) Expansion = Contraction = Expansion
(2) The last expansion can be an arbitrarily long inflation phase

conditions for cyclic scenario
(i) No need of negative potential
(ii) No need of fine tuning



