Bouncing Universe from Vothing

Takahiro Terada (KEK, JSPS fellow)

Hiroki Matsui, Fuminobu Takahashi, TT, *Phys. Lett. B* 795 (2019) 152, arXiv:1904.12312 [gr-qc]

Introduction

Cosmological History

Cosmological History

Always Expanding?

Usually, yes.

For a flat universe,

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + a^2(t)\mathrm{d}\mathbf{x}^2$$

As long as $\rho > 0$, it keeps expanding.

Universe can contract

If ho=0 (i.e., H=0) is realized, the universe starts to contract.

$$\dot{H} = -rac{1}{2}(
ho + P)$$
 Null Energy Condition (NEC): $ho + P \geq 0$

For example,

it is possible for the scalar field with a negative potential.

However, it **keeps contracting**, eventually leading to a **big crunch**.

[Linde, hep-th/0110195] [Felder et al., hep-th/0202017]

Negative Potential

Standard Model

[Buttazzo et al., 1307.3536]

Supergravity

R-symmetry breaking, negative semi-definite

$$V = e^K \left(g^{\bar{j}i} D_i W \bar{D}_{\bar{j}} \bar{W} - 3|W|^2 \right)$$

SUSY breaking, positive semi-definite

figure from [Kallosh et al., 1808.09428]

String Landscape

De Sitter vacuum construction is nontrivial in superstring theory.

(cf. Swampland de Sitter conjecture) [Obied et al., 1806.08362]

Negative Potential

Spatial Curvature

Friedmann-Lemaitre-Robertson-Walker metric

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - \mathcal{K}r^{2}} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\varphi^{2} \right) \right]$$

spatial curvature

positive (closed), zero (flat), or negative (open)

$$H^2 = \frac{\rho}{3} - \frac{\mathcal{K}}{a^2}$$

$$\dot{H} = -\frac{1}{2}(\rho + P) + \frac{\mathcal{K}}{a^2}$$

Spatial Curvature

Friedmann-Lemaitre-Robertson-Walker metric

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - \mathcal{K}r^{2}} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\varphi^{2} \right) \right]$$

spatial curvature

positive (closed), zero (flat), or negative (open)

$H^2 = \frac{\rho}{3} - \frac{\mathcal{K}}{a^2}$

$$\dot{H} = -\frac{1}{2}(\rho + P) + \frac{\mathcal{K}}{a^2} \qquad \qquad a(t) = \sqrt{\frac{3\mathcal{K}}{\Lambda}} \cosh\left(\sqrt{\frac{\Lambda}{3}}t\right)$$

Contraction → **Expansion** is possible.

simple example of a "bounce"

$$ho = -P = \Lambda$$
 (cosmological constant)

$$\mathcal{K} > 0$$

$$a(t) = \sqrt{\frac{3\mathcal{K}}{\Lambda}} \cosh\left(\sqrt{\frac{\Lambda}{3}}t\right)$$

Expansion, Contraction, and Expansion Again

Einstein Gravity & a Scalar Field

Action

$$S = \int d^4x \sqrt{-g} \left(\frac{1}{2} R - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right)$$

Eqs. of motion

$$\begin{split} H^2 &= \frac{1}{3} \left(\frac{1}{2} \dot{\phi}^2 + V(\phi) \right) - \frac{\mathcal{K}}{a^2} \,, \\ \dot{H} &= -\frac{1}{2} \dot{\phi}^2 + \frac{\mathcal{K}}{a^2} \,, \\ \ddot{\phi} &+ 3H \dot{\phi} + \frac{\partial V(\phi)}{\partial \phi} = 0 \,. \end{split}$$

1. Initial Expansion Phase

Eqs. of motion

$$\begin{split} H^2 &= \frac{1}{3} \left(\frac{1}{2} \dot{\phi}^2 + V(\phi) \right) - \frac{\mathcal{K}}{a^2} \,, \\ \dot{H} &= -\frac{1}{2} \dot{\phi}^2 + \frac{\mathcal{K}}{a^2} \,, \\ \ddot{\phi} + 3H\dot{\phi} + \frac{\partial V(\phi)}{\partial \phi} &= 0 \,. \end{split}$$

Suppose $\rho \gg \frac{\mathcal{K}}{a^2} > 0$ initially.

1. Initial Expansion Phase

Eqs. of motion

$$H^{2} = \frac{1}{3} \left(\frac{1}{2} \dot{\phi}^{2} + V(\phi) \right) - \frac{\mathcal{K}}{a^{2}},$$

$$\dot{H} = -\frac{1}{2} \dot{\phi}^{2} + \frac{\mathcal{K}}{a^{2}},$$

$$\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V(\phi)}{\partial \phi} = 0.$$

Suppose $\rho \gg \frac{\mathcal{K}}{a^2} > 0$ initially.

1. Initial Expansion Phase

Eqs. of motion

$$\begin{split} H^2 &= \frac{1}{3} \left(\frac{1}{2} \dot{\phi}^2 + V(\phi) \right) - \frac{\mathcal{K}}{a^2} \,, \\ \dot{H} &= -\frac{1}{2} \dot{\phi}^2 + \frac{\mathcal{K}}{a^2} \,, \\ \ddot{\phi} + 3H\dot{\phi} + \frac{\partial V(\phi)}{\partial \phi} &= 0 \,. \end{split}$$

Suppose $\rho \gg \frac{\mathcal{K}}{a^2} > 0$ initially.

2. Contraction Phase

Eqs. of motion

$$H^{2} = \frac{1}{3} \left(\frac{1}{2} \dot{\phi}^{2} + V(\phi) \right) - \frac{\mathcal{K}}{a^{2}},$$

$$\dot{H} = -\frac{1}{2} \dot{\phi}^{2} + \frac{\mathcal{K}}{a^{2}},$$

$$\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V(\phi)}{\partial \phi} = 0.$$

Scalar Potential

During contraction, H < 0 works as *anti-friction*.

2. Contraction Phase

Eqs. of motion

$$H^{2} = \frac{1}{3} \left(\frac{1}{2} \dot{\phi}^{2} + V(\phi) \right) - \frac{\mathcal{K}}{a^{2}},$$

$$\dot{H} = -\frac{1}{2} \dot{\phi}^{2} + \frac{\mathcal{K}}{a^{2}},$$

$$\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V(\phi)}{\partial \phi} = 0.$$

Scalar Potential

During contraction, H < 0 works as *anti-friction*.

2. Contraction Phase

Eqs. of motion

$$H^{2} = \frac{1}{3} \left(\frac{1}{2} \dot{\phi}^{2} + V(\phi) \right) - \frac{\mathcal{K}}{a^{2}},$$

$$\dot{H} = -\frac{1}{2} \dot{\phi}^{2} + \frac{\mathcal{K}}{a^{2}},$$

$$\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V(\phi)}{\partial \phi} = 0.$$

Scalar Potential

During contraction, H < 0 works as *anti-friction*.

If the kinetic energy is sufficiently suppressed on the plateau, the positive curvature can make the universe expand again.

3. Second Expansion Phase

Eqs. of motion

Scalar Potential

The flat part of the potential, built in for the bounce purpose, lets the universe naturally enter the **slow-roll inflation**ary regime.

The resultant cosmology can be consistent with observation.

Example Model

Example Model

Scalar potential

$$V(\phi) = V_0 \left(\tanh^2 \left[\frac{\phi}{\sqrt{6\alpha}} \right] + \beta \tanh \left[\frac{\phi}{\sqrt{6\alpha}} \right] + \gamma \right)$$

$$\alpha>0,\,-1<\beta<1,\,-1<\gamma\leq0$$

Initial conditions for numerical calculation

$$\phi(0) = -\sqrt{6\alpha},$$

$$\dot{\phi}(0) = 0,$$

$$\phi(0) = -\sqrt{6\alpha},$$
 $\dot{\phi}(0) = 0,$ and $\frac{\mathcal{K}}{a(0)^2} = 0.05\sqrt{V_0}.$

Numerical results

Possible origin of the positive curvature

Birth of Closed Universe

Mini-superspace approximation

Wave function of the universe: $\Psi[g_{\mu\nu}(t,x),\phi(t,x)]=\Psi[a(t),\phi(t)]$

Wheeler-De Whit eq.

$$\mathcal{H}(a,\phi)\Psi(a,\phi) = 0$$

where

$$\mathcal{H}(a,\phi) = \frac{1}{12a^2} \frac{\partial}{\partial a} \left(a \frac{\partial}{\partial a} \right) - \frac{1}{2a^3} \frac{\partial^2}{\partial \phi^2} - U(a,\phi) \quad \text{[Kiefer, Sandhoefer, 0804.0672]}$$

$$U(a,\phi) = a^{3} \left(\frac{3\mathcal{K}}{a^{2}} - V(\phi) \right)$$

Initial conditions [Vilenkin, PRD37, 888 (1988)]

$$a(0) = \sqrt{\frac{3 \mathcal{K}}{V(\phi)}} \qquad \dot{a}(0) = 0$$

$$\phi(0) = \text{const.}$$
 $\dot{\phi}(0) = 0$

Birth of Closed Universe

Mini-superspace approximation

Wave function of the universe: $\Psi[g_{\mu\nu}(t,x),\phi(t,x)]=\Psi[a(t),\phi(t)]$

Wheeler-De Whit eq.

$$\mathcal{H}(a,\phi)\Psi(a,\phi) = 0$$

where

$$\mathcal{H}(a,\phi) = \frac{1}{12a^2} \frac{\partial}{\partial a} \left(a \frac{\partial}{\partial a} \right) - \frac{1}{2a^3} \frac{\partial^2}{\partial \phi^2} - U(a,\phi) \quad \text{[Kiefer, Sandhoefer, 0804.0672]}$$

$$U(a,\phi) = a^{3} \left(\frac{3\mathcal{K}}{a^{2}} - V(\phi) \right)$$

Initial conditions [Vilenkin, PRD37, 888 (1988)]

$$a(0) = \sqrt{\frac{3\mathcal{K}}{V(\phi)}} \qquad \dot{a}(0) = 0$$

$$\phi(0) = \text{const.}$$
 $\dot{\phi}(0) = 0$

Summary and conclusions

- We find new nontrivial cosmological solutions.
 - (Creation from Nothing →) Expansion → Contraction → Inflationary Expansion
 - (Creation from Nothing →) Cyclic

- We find new nontrivial cosmological solutions.
 - (Creation from Nothing →) Expansion → Contraction → Inflationary Expansion
 - (Creation from Nothing →) Cyclic
- 4dim, Einsteing gravity, a real canonical scalar.
 No violation of Null Energy Condition. No singularity.

- We find new nontrivial cosmological solutions.
 - (Creation from Nothing →) Expansion → Contraction → Inflationary Expansion
 - (Creation from Nothing →) Cyclic
- 4dim, Einsteing gravity, a real canonical scalar.
 No violation of Null Energy Condition. No singularity.
- Our solutions open interesting possibilities for General Relativity and Our Universe (past and future).

- We find new nontrivial cosmological solutions.
 - (Creation from Nothing →) Expansion → Contraction → Inflationary Expansion
 - (Creation from Nothing →) Cyclic
- 4dim, Einsteing gravity, a real canonical scalar.
 No violation of Null Energy Condition. No singularity.
- Our solutions open interesting possibilities for General Relativity and Our Universe (past and future).
- Many things to be explored.

Appendix

Dynamics of Scalar Field

approximation	regime	relevance
$\ddot{\phi} + 3H\phi + \frac{\partial V(\phi)}{\partial \phi} = 0$	"No friction" e.g.) oscillation	relevant around H=0
$\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V(\phi)}{\partial \phi} = 0$	"Slow-Roll regime" Potential energy dominate.	attractor solution during expansion
$\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V(\phi)}{\partial \phi} = 0$	"Ultra-Slow-Roll regime" Kinetic energy is important.	attractor solution during contraction
$\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V(\phi)}{\partial \phi} = 0$	"Scaling solution" (special situation)	

Dynamics of Scalar Field

approximation	regime	relevance
$\ddot{\phi} + 3H\phi + \frac{\partial V(\phi)}{\partial \phi} = 0$	"No friction" e.g.) oscillation	relevant around H=0
$\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V(\phi)}{\partial \phi} = 0$	"Slow-Roll regime" Potential energy dominate.	attractor solution during expansion
$\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V(\phi)}{\partial \phi} = 0$	"Ultra-Slow-Roll regime" Kinetic energy is important.	attractor solution during contraction
$\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V(\phi)}{\partial \phi} = 0$	"Scaling solution" (special situation)	the kinetic energy
	(special situation) How to suppress the kinetic energy for a successful bounce is the key for a successful bounce.	

Tuning of the offset

$$\alpha = 1, \quad \beta = 0, \quad \gamma = -0.09143$$

$$3H^2 = \frac{1}{2}\dot{\phi}^2 + V - \frac{3\mathcal{K}}{a^2}$$
 Kinetic "Curvature energy"

Acceleration
$$\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V}{\partial \phi} = 0$$
 Friction

Tuning of the left-right asymmetry

$$\alpha = 1, \quad \beta = -0.3805885, \quad \gamma = -0.05$$

$$3H^2 = \frac{1}{2}\dot{\phi}^2 + V - \frac{3\mathcal{K}}{a^2}$$
 Kinetic "Curvature energy"

Acceleration
$$\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V}{\partial \phi} = 0$$
 Friction

Tuning of the width

$$\alpha = 0.8924, \quad \beta = 0, \quad \gamma = -0.1$$

Potential

 $= \frac{1}{2}\phi + V - \frac{1}{a^2}$

Kinetic energy

"Curvature energy"

Acceleration
$$\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V}{\partial \phi} = 0$$
 Friction

Birth of Closed Universe

Initial conditions

[Vilenkin, PRD37, 888 (1988)]

$$a(0) = \sqrt{\frac{3\mathcal{K}}{V(\phi)}} \qquad \dot{a}(0) = 0$$

$$\phi(0) = \text{const.}$$
 $\dot{\phi}(0) = 0$

How this is determined is controversial.

Two proposals [Vilenkin, PRD37, 888 (1988)] for nucleation probability

$$\mathcal{P}\left(a,\phi\right)\propto\exp\left(\mp\frac{24\pi^2M_{\mathrm{P}}^4}{V\left(\phi\right)}\right) \tag{Vilenkin, PRD30, 509 (1984)} \\ \text{[Hartle, Hawking, PRD28, 2960 (1983)]} \\ \text{"no-boundary proposal"}$$

Even if the universe is born with tiny energy density by the Hartle-Hawking process, the energy density can increase in the contraction phase, which makes the scenario viable.

Cyclic solution

Scalar potential

$$V(\phi) = V_0 \left(\tanh^2 \left[\frac{\phi}{\sqrt{6\alpha}} \right] + \beta \tanh \left[\frac{\phi}{\sqrt{6\alpha}} \right] + \gamma \right)$$

$$\alpha > 0, -1 < \beta < 1, -1 < \gamma \le 0$$

Initial conditions for numerical calculation

$$a(0) = \sqrt{\frac{3\mathcal{K}}{V(\phi)}}$$
 $\dot{a}(0) = 0$ $\phi(0) = -3\sqrt{6\alpha}$ $\dot{\phi}(0) = 0$

Numerical results

$$\alpha = 5 \times 10^{-5}, \quad \beta = \gamma = 0, \quad \mathcal{K} = 0.05V_0$$

(Details in the next slide)

Cyclic solution

Energy densities

Mechanism of Cycles

Coarse graining oscillations of the scalar field

$$w_{\text{ave}} = \langle w \rangle_{\text{osc}}$$

• Not restricted to our past. It may occur in future.

- Not restricted to our past. It may occur in future.
- Tuning is necessary. Anthropic justification?

- Not restricted to our past. It may occur in future.
- Tuning is necessary. Anthropic justification?
- Eternal inflation or "just enough" inflation. Observable effects?

- Not restricted to our past. It may occur in future.
- Tuning is necessary. Anthropic justification?
- Eternal inflation or "just enough" inflation. Observable effects?
- CMB data slightly favor positive curvature. It can relax the H_0 tension.

- Not restricted to our past. It may occur in future.
- Tuning is necessary. Anthropic justification?
- Eternal inflation or "just enough" inflation. Observable effects?
- CMB data slightly favor positive curvature. It can relax the H_0 tension.
- In contrast with bubble universes in the string landscape.

- Not restricted to our past. It may occur in future.
- Tuning is necessary. Anthropic justification?
- Eternal inflation or "just enough" inflation. Observable effects?
- CMB data slightly favor positive curvature. It can relax the H_0 tension.
- In contrast with bubble universes in the string landscape.
- Vacuum energy can change during the contraction phase.

- Not restricted to our past. It may occur in future.
- Tuning is necessary. Anthropic justification?
- Eternal inflation or "just enough" inflation. Observable effects?
- CMB data slightly favor positive curvature. It can relax the H_0 tension.
- In contrast with bubble universes in the string landscape.
- Vacuum energy can change during the contraction phase.
- Bounce at an arbitrarily higher energy scale may be possible.

Constraints on Curvature

$$\Omega_{\mathcal{K}} = -0.056^{+0.028}_{-0.018}$$

 $0.000_{-0.018}$

$$\Omega_{\mathcal{K}} = -0.044^{+0.018}_{-0.015}$$

$$\Omega_{\mathcal{K}} = -0.0106 \pm 0.0065$$

$$\Omega_{\mathcal{K}} = 0.0007 \pm 0.0019$$

(68%, Planck TT+lowE)

(68%, Planck TT,TE,EE+lowE)

(68%, Planck TT,TE,EE+lowE+lensing)

(68%, Planck TT,TE,EE+lowE+lensing+BAO)

[Planck collaboration 2018: Cosmological parameters]

[Riess, Casertano, Yuan, Macri, Scolnic, 1903.07603]

Uplifting Vacuum Energy

Another minimum for φ may not be necessary.

Potential of light (axionic) field

[Graham, Kaplan, Rajendran, 1902.06793]

Uplifting Vacuum Energy

Another minimum for φ may not be necessary.

Potential of light (axionic) field

[Graham, Kaplan, Rajendran, 1902.06793]

Uplifting Vacuum Energy

Another minimum for φ may not be necessary.

Potential of light (axionic) field

[Graham, Kaplan, Rajendran, 1902.06793]

Uplift of the cosmological constant is possible.

Increase Energy before Bounce

Kinetic-potential scaling solution

$$\frac{1}{2}\dot{\phi}^2(t) \propto V(\phi(t))$$

$$V(\phi) \sim \exp\left(-\sqrt{3(1+w)}\phi\right)$$

Increase Energy before Bounce

Kinetic-potential scaling solution

$$\frac{1}{2}\dot{\phi}^2(t) \propto V(\phi(t))$$

$$V(\phi) \sim \exp\left(-\sqrt{3(1+w)}\phi\right)$$

Increase Energy before Bounce

Kinetic-potential scaling solution

$$\frac{1}{2}\dot{\phi}^2(t) \propto V(\phi(t))$$

$$V(\phi) \sim \exp\left(-\sqrt{3(1+w)}\phi\right)$$

bounce around here (w < -1/3)

This may be useful for the Hartle-Hawking "no-boundary" scenario.

Related literature

Our scenario as a whole gives us a new interesting possibility, but each part has been studied well in the literature.

Note: We do NOT violate the null energy condition. We consider only NON-singular bounce.

Contraction by a negative potential

[Linde, hep-th/0110195]
[Felder et al., hep-th/0202017]

Cyclic universe

[Kardashev, MNRAS 243, 252 (1990)]

[Dabrowski, gr-qc/9503017]

[Graham, Horn, Kachru, Rajendran, Torroba, 1109.0282]

[Graham, Horn, Rajendran, Torroba, 1405.0282]

See also

[Biswas, 0801.1315]

[Biswas, Alexander, 0812.3182]

[Barrow, Ganguly, 1703.05969]

[Ganguly, Barrow, 1710.00747]

Bounce with positive curvature

[Martin, Peter, hep-th/0307077]

[Gordon, Turok, hep-th/0206138]

[Falciano, Lilley, Peter, 0802.1196]

[Haro, 1511.05048]

[Parker, Fulling, PRD7, 2357 (1973)]

[Starobinsky, SAL4, 82 (1978)]

[Barrow, Matzner, PRD21, 336 (1980)]

[Hawking, Les Houches 1983]

[Page, CQG 1, 417 (1984)]

[Schmidt, gr-qc/0108087]

[Cornish, Shellard, gr-qc/9708046]

What is new?

To best of our knowledge, our scenarios are the first bouncing/cyclic scenarios satisfying the following conditions.

Conditions (common)

(A) 4d Einstein gravity,

FLRW universe with positive spatial curvature,

A single real canonical scalar

(B) No violation of null energy condition, No singularity

conditions for "N-shaped" bouncing scenario

- (1) Expansion → Contraction → Expansion
- (2) The last expansion can be an arbitrarily long inflation phase

conditions for cyclic scenario

- (i) No need of negative potential
- (ii) No need of fine tuning