The Hiccupping Universe

DANIELE TERESI

daniele.teresi@df.unipi.it

A. Strumia and D. Teresi, *Cosmological constant: relaxation vs multiverse*, arXiv:1904.07876 [gr-qc]

PASCOS 2019, MANCHESTER, 02/07/19

A. Strumia and D. Teresi, *Cosmological constant:* arXiv:1904.07876 [gr-qc]

UNIVERSITÀ DI PISA

European Commission Horizon 2020 European Union funding for Research & Innovation

PASCOS 2019, MANCHESTER,

UNIVERS

The Hiccupping Universe

DANIELE TERESI

daniele.teresi@df.unipi.it

A. Strumia and D. Teresi, *Cosmological constant: relaxation vs multiverse*, arXiv:1904.07876 [gr-qc]

PASCOS 2019, MANCHESTER, 02/07/19

Why putting a flat scalar field in the sky?

- Standard Model and ΛCDM very (too much) successful
- usual list of unexplained facts: dark matter, baryon asymmetry, isotropy...
- ... plus the old naturalness problems:
 - why is the Universe big? (i.e. gravity is way way way way weaker than quantum mechanics would suggest)
 - why does the Universe have a non-boring history? (i.e. the CC is way way way smaller than quantum mechanics would suggest)
- now unfashionable, but not having found the solution doesn't mean that a problem has disappeared
- classical approaches based on symmetries
- more recently: approaches based on dynamics in the Early Universe (paradigmatic example: relaxion [Graham, Kaplan, Rajendran, '15])
- also for the CC!

[Abbott '85; Alberte, Creminelli, Khmelnitsky, Pirtskhalava, Trincherini '16; Graham, Kaplan, Rajendran, '19]

typically involve a scalar field with a bottom-less quasi-flat potential

Rolling

Cosmology with a bottom-less scalar

- scalar field with $\mathcal{L} = \frac{1}{2} (\partial \phi)^2 V(\phi)$ with $V(\phi) \simeq -g^3 \phi$ g tiny
- for large $-\phi \gg M_P \longrightarrow$ inflation with $H^2 = \frac{8\pi}{3M_P^2} \left(\frac{\dot{\phi}^2}{2} + V(\phi)\right)$
- quantum $\delta\phi\sim H/2\pi$ and classical slow-roll $\dot{\phi}\simeq -V'/3H$
- classical slow roll from $\phi\gtrsim\phi_{
 m class}=-M_P^2/g~~{
 m to}~-\phi\sim M_P$
- then $V(\phi)$ quickly becomes negative and compensates $\dot{\phi}^2$: expansion \rightarrow contraction

Rolling

Is this compatible with what we see?

recollapse compatible with observed positive cosmological constant!

The Hiccupping Universe

Bouncing

Bouncing: relaxation of the cosmological constant

- slow-roll ends at $\phi \sim -M_P$, turning point at $\phi \sim M_P$
- special point of dynamics, with small CC: $V_{\rm end} \sim -g^3 M_P$
- cosmological constant has relaxed from $V_{
 m in}\sim g^3\phi_{in}$ to $V_{
 m end}\ll V_{
 m in}$ [Graham, Kaplan, Rajendran, '19]
- at this stage Universe is collapsing; anti-de Sitter vacua "terminal"?
- resolution of singularity not known \rightarrow it makes sense to assume the possibility of a **rebounce** mechanism (e.g. [Graham, Kaplan, Rajendran, '17])
- assumption: during the rebounce V is changed by small V_{rebounce}
- if $|V_{end}| \lesssim V_{rebounce} \approx$ CC: O(1) probability to have observed Universe
- GKR want to avoid eternal inflation \leftrightarrow spatial multiverse $\phi_{in} > \phi_{class} \Longrightarrow V_{in} \lesssim g^2 M_P^2 \approx MeV$

... but the story goes on ...

- φ keeps rolling down...
- we found that the recollapse happens unavoidably (unless the assumptions fail)
- again, at $V \simeq V_{end} = -g^3 M_P$ recollapse, re-heating, bounce, expansion, ...
- if $V_{\text{rebounce}} > V_{\text{class}}$:
 - quantum evolution now dominates —> eternal inflation
 - tunnelling/quantum fluctuations bring locally a patch to V < V_{class}
 - this patch relaxes, collapses, bounces and back to V_{rebounce} > V_{class}
 - qualitatively similar to standard spatial multiverse (and to [Garriga, Vilenkin, '12])
- if *V*_{rebounce} < *V*_{class} (the Universe "hiccups"):
 - the whole Universe (or the starting patch) follows classical evolution
 - it undergoes, as a whole, cycles of finite life-time
 - formally an infinite number of cycles, each with different $V \sim V_{\text{rebounce}} \longleftrightarrow \text{CC}$
 - a "hiccupping" temporal multiverse is generated!

The hiccupping multiverse

- Universes with finite (not exponentially long!) life-time regardless of sign of CC
- no "monsters" inside the hiccupping multiverse:
 - exponentially long de Sitter (like in ΛCDM) would make Boltzmann brains more probable than us → killed by the finite lifetime
 - similarly for the youngness paradox (although avoided by some meaasures already in the spatial multiverse)
- more "probable" to get observed small CC through this dynamics, rather than directly from spatial multiverse

The hiccupping multiverse

- Universes with finite (not exponentially long!) life-time regardless of sign of CC
- no "monsters" inside the hiccupping multiverse:
 - exponentially long de Sitter (like in ΛCDM) would make Boltzmann brains more probable than us → killed by the finite lifetime
 - similarly for the youngness paradox (although avoided by some meaasures already in the spatial multiverse)
- more "probable" to get observed small CC through this dynamics, rather than directly from spatial multiverse

Hiccupping

- disordered landscape (like from string theory) could exist or not; the bounce shouldn't trigger it (e.g. T_{bounce} <
- the mechanism needs an ordered landscape: minima close-by in field space have similar energy [Abbott '85; Graham, Kaplan, Rajendran '15; Arvanitaki, Dimopoulos, Gorbenko, Huang, Van Tilburg, '16; Cline, Espinosa '18; Geller, Hochberg, Kuflik '18; Cheung, Saraswat '18; Hook, '19]
- example: Abbott's model $V_{\phi'} = -g^3_{\phi'}\phi' \Lambda^4\cosrac{\phi'}{f_{\phi'}}$ (ϕ' could be ϕ)
- at each contraction/bounce/expansion a phase where fluctuations dominate and φ' diffuses (upwards and downwards)
- combined with average drift downwards → asymmetric hiccup
- symmetric hiccupp possible?

Hiccupping

"""""Probabilities"""""

- disclaimer: "probabilities" for 1 observer (us), affected by infinities...
- probability for a given CC V as measured by an observer:

 $\mathcal{P}_{obs}(V) = \mathcal{P}(V) \mathcal{P}_{ant}(V)$ (Bayes' theorem)

- anthropic \mathcal{P}_{ant} affected by infinities (measure problem): $\mathcal{P}_{ant}(V) \propto \int dt \, \mathcal{V}_{reg} \frac{d^2 n}{dt dV}(V)$
- anthropic factor $\mathcal{P}_{ant}(V)$ favours $V \approx 100 \,\text{CC}$ (\implies anthropics not enough?) [Weinberg '87, '00; Garriga, Vilenkin '99]
- a-priori distribution $\mathcal{P}(V)$ given by hiccupping dynamics
- dynamics gives $V \simeq 0$ as special point, $\mathcal{P}(V)$ can peak there

