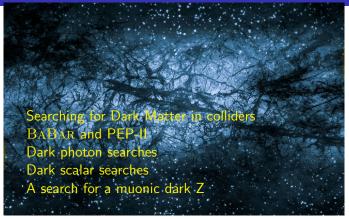
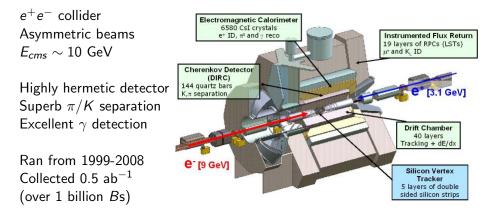
Limits on the Dark Sector from BABAR


Roger Barlow

University of Huddersfield

July 2019


Dark Matter searches with BABAR

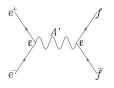
Why searching for Dark Matter in colliders?

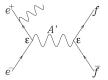
- We know it's there, because of Galaxy motion and CMB
- It interacts gravitationally, so it has mass
- It presumably gets its mass from a Higgs field
- So it has some sort of gauge structure
- Hence gauge bosons
- Although these are dark they connect with our gauge bosons through kinetic mixing: small (ballpark estimate $\epsilon \sim 10^{-4}$) but inescapable.
- Search in particle collisions events have very small cross sections and subtle but distinctive signatures.
- So need large amounts of data, clean environment, hermetic detector and high quality energy/ momentum measurements and particle identification

The BABAR Detector at PEP-II

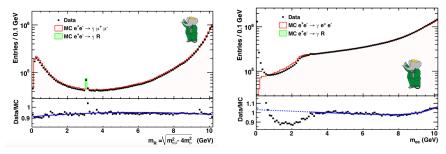
Established CP violation in the B sector, plus many other physics results...

Dark photon searches using ISR

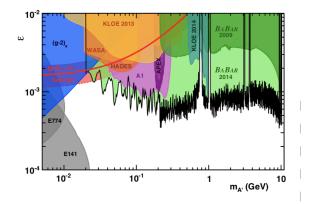

"Search for a dark photon in e^+e^- collisions at B_{ABAR} ", *Phys. Rev. Lett.* **113**, 201801 (2014)


Dark Photon A'Kinetic mixing ϵ with standard photon A (or γ).

Scan for narrow A' peak in $e^+e^- \rightarrow A'$ difficult as the beam energy has to be exactly right.


Instead use ISR process, measuring photon.

Measure $\mu^+\mu^-$ (and e^+e^-) pairs and look for narrow peak in invariant mass.


Dark photon searches using ISR

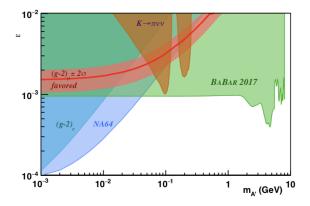
Trigger on two oppositely charged tracks + photon(s) Handy to work with $m_R = \sqrt{M_{\mu^+\mu^-}^2 - 4m_{\mu}^2}$ Electron channel harder due to high background. Also MC does not describe low mass region.

No sign of any signal in electron or muon channel. ψ and Υ resonances show up, but nothing new

Dark photon searches using ISR

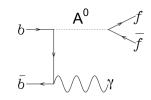
Convert non-observation of signal into limits of $M_{A'}$ and ϵ using cross section given by R. Essig, P. Schuster, and N. Toro, Phys. Rev. D 80, 015003 (2009).

Search for invisible dark photon


J P Lees *et al*, "Search for invisible decays of a dark photon produced in e^+e^- collisions at BABAR", Phys. Rev. Lett. **119** 1031804 (2017)

Search for a dark photon decaying invisibly to dark matter objects

Not whole dataset - only 53 fb⁻¹ out of full 514 fb⁻¹ - due to need for specific trigger: a 2 GeV (later 1 GeV) photon and no tracks from intersection point found in the drift chamber.


Main background from $e^+e^- \rightarrow \gamma\gamma$ with badly measured photons. Separation using BDT with 12 inputs from clusters in electromagnetic and hadron calorimeters. Missing mass from $M_X^2 = s - 2E_{\gamma}^*\sqrt{s}$. No significant signal: best (at $M_X = 6.21$ GeV) is 2.6 σ 3×10⁻⁶ 2 ² Upper Limit at 90% CL 1 5 5 5 5 5 Bavesian limit Profile-likelihood limit $\gamma^2/df = 69.0/7$ Events / (0.5 GeV²) 0.5 10⁻¹ 7 8 m_{A'} (GeV) 25 30 35 40 60 M_x² (GeV²) 2 6

Exclusion region (90% confidence upper limit)

Dark scalar searches

Search for a dark scalar A^0 in $\Upsilon(1S)$ decays.

Good place to look as higgs-like A^0 may couple to high mass *b* quark. Obvious strategy would be to run at $\sqrt{s} = M_{\Upsilon(1S)} = 9.46 GeV$. But background from $e^+e^- \rightarrow q\overline{q}$ continuum still very high. To get pure sample of $\Upsilon(1S)$, run on $\Upsilon(2S)$ and tag the 2 pions in

 $\Upsilon(2S) o \Upsilon(1S) \pi^+\pi^-$ decays

 $\Upsilon(3S)$ can also be used.....

Dark scalar searches

Limit on product branching ratio $Br(\Upsilon(1S) \rightarrow \gamma A^0) \times Br(A^0 \rightarrow \text{final state})$ Require $\pi^+\pi^-$ giving Υ tag, fairly energetic photon + specific signature(s)

Final state	90% CL Limit	BABAR Reference	
	for small m_A		
invisible	$3 imes 10^{-6}$	Phys. Rev. Lett. 107, 021804 (2011)	
hadrons	10^{-6}	Phys. Rev. Lett. 107, 221803 (2011)	
$\mu^+\mu^-$	$3 imes 10^{-7}$	Phys. Rev. D 87 , 031102 (2013)	
$\tau^+ \tau^-$	10^{-5}	Phys. Rev. D 88 , 071102 (2013)	
gg	10^{-6}	Phys. Rev. D 88 , 031701 (2013)	
<i>s</i> s	10^{-5}	Phys. Rev. D 88 , 031701 (2013)	
cc	10^{-4}	Phys. Rev. D 91 , 071102 (2015)	

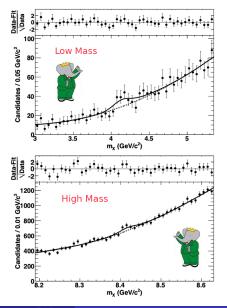
Analyses can be interpreted in framework on NMSSM 2-Higgs models, which gives predictions for branching ratios depending on tan β . But results stand on their own.

Dark scalar search decaying to $c\overline{c}$

"Search for a light Higgs resonance in radiative decays of the $\Upsilon(1S)$ with a charm tag" *Phys. Rev.* **D 91**, 071102 (2015)

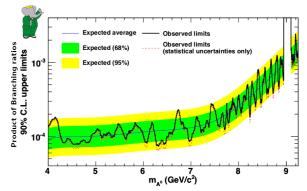
Select on

• Energetic photon


•
$$\pi^+\pi^-$$
 with $m_R = \sqrt{M_{\Upsilon'}^2 + m_{\pi\pi}^2 - 2M_{\Upsilon'}E_{\pi\pi}}$ within
9.45 - 9.47 GeV/ c^2

• A least one charm meson from (inc charge conjugates) $D^0 \rightarrow K^-\pi^+, D^0 \rightarrow K^0_s \pi^+\pi^-, D^0 \rightarrow K^-\pi^+\pi^+\pi^-,$ $D^+ \rightarrow K^-\pi^+\pi^+, D^*(2010) \rightarrow \pi^+D^0(\rightarrow K^-\pi^+\pi^0)$

Separate high and low A^0 mass regions 4-8 and 7.5-9.25 GeV due to high background from low energy photons at large $M_{A'}$. Then select using 10 BDTs (2 regions, 5 channels) with 24 variables Reconstruct missing mass from well-measured quantities


$$M_X^2 = (P_{e^+e^-} - P_{\pi\pi} - P_{\gamma})^2$$

No sign of any a significant excess over background (2.3 σ at best)

Dark scalar search decaying to $c\overline{c}$

Non-observation translates to 90% upper limits

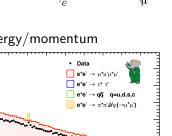
A search for a dark ZSearch for a muonic dark force at BABAR Phys. Rev. D 94, 011102 (2016)

Possible dark Z' boson coupling to 2nd and 3rd generation but not 1st.

X G He, G C Joshi, H Lew & R R Volkas, *Phys. Rev.* **D** 44, 2118 (1991).

4 tracks, with muon ID and no missing energy/momentum

intries / 0.1 (GeV 500 4000

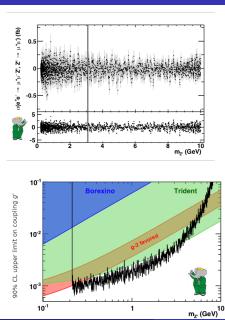

Data/MC 1.2

3000

2000

1000

No signal seen Simulation does not include full radiative corrections hence different shape. But can still extract limits



m_R (GeV)

Measurement of cross section as function of $m_{Z'}$

Extract 90% CL limits on coupling as a function of mass

Rule out wide range

Conclusions

Follow)	

#DarkMatter: We do not know what it is. There seems to be huge amounts in the Universe. We have no idea why.

#Antimatter:

We know exactly what it is. There seems to be almost none in the Universe. We have no idea why not.

9:19 AM - 2 May 2019

BABAR has contributed not only to our knowledge of #Antimatter but also to our puzzlement over #DarkMatter

Good luck to Belle II !