
Bayesian and frequentist approaches to resonance
searches

arXiv:1902.03243

Andrew Fowlie

July 2, 2019

Nanjing Normal University

https://arxiv.org/abs/1902.03243


Table of contents

1. Background

2. Interpretations

3. Results from toy Higgs search

4. Conclusions

1/25



Background



What is that?

A new particle? or just a �uctuation?

How can we characterise our uncertainty?
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Another 750 GeV?

or something real? Should you write a paper about it? Announce a press
conference? Start writing your Nobel prize speech?
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Interpretations



Frequentist: what is probability?

Probabilities are not degrees of certainty or belief.

Probabilities are frequencies at which events occur in identical repeat
experiments.

P (A) = lim
N→∞

nA

N
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Frequentist: what can we do?

We cannot quantify our uncertainty about the resonance.

We can attempt to control the frequency at which we would make a
type-1 error.

Type-1 error: Reject null hypothesis when it is true.

We must specify a null hypothesis, H0, and a desired type-1 error rate, α.
We reject H0 at a pre-chosen signi�cance α or we do not.

The rate α (implicitly) chosen to be about 10−7 (5σ) in particle physics.
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Frequentist: how do we do it? i

We construct a test-statistic that measures discrepancies between data
and the null hypothesis, e.g. the log-likelihood ratio,

q ≡−2ln
maxθ1 P (D |M1,θ1)

maxθ2 P (D |M0,θ2)

This involves numerical optimisation of the likelihood function.

We calculate the p-value.

p-value: probability of obtaining a test-statistic at least as extreme as
the one we saw, if the null hypothesis was true.
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Frequentist: how do we do it? ii

The observed p-value is not a continuous measure of our con�dence in
H0. The p-value was a means to controlling the type-1 error rate.

It is common nevertheless to interpret p as a measure of our
con�dence in H0.

7/25



Frequentist: global or local?

If the data had been di�erent, we would have constructed a resonance
model with a di�erent mass to match the di�erent data.

We would have looked elsewhere.

Global p-values account for this look-elsewhere e�ect.

We calculated global p-values with Gross-Vitells [1] and Monte-Carlo
simulations.
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Bayesian: what is probability?

Probabilities are degrees of belief about any proposition.

There is a unique rule for updating them in light of information — Bayes’
theorem.

P (A |B) = P (B | A)P (A)

P (B)

Bayesian statistics⇔ probability theory
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Bayesian: what can we do?

We can simply update our belief in the signal + background model
relative to the background only model.

The factor that updates our belief is a Bayes factor.

Bayes factor= Relative belief after data
Relative belief before data

= P (D |M1)

P (D |M2)
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Bayesian: how do we do it?

The numerator and denominator are so-called Bayesian evidences. For a
model with parameters θ,

P (D |M) =
∫

P (D |M ,θ) p (θ |M)dθ

To compare with the p-value, we calculate the posterior of the
background model, assuming equal prior odds,

P (M0 |D) = 1

1+B

This is the plausibility of the background model in light of data.
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Likelihood function

A component of Bayesian and frequentist analysis. The probability of
obtaining data given a particular model and parameters.

Our data is binned. The likelihood is a product of Poissons, one for
each bin.

P (D |M ,θ) =
∏

i

e−λiλ
oi

i

oi !
,

where the expected number of events depends on the model
parameters, λ=λ(θ).
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Results from toy Higgs search



From quantum mechanics, we learned an antidote to disputes about
interpretations.

Shut up and calculate.
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Toy problem

To make calculations, let’s pick a toy problem to study. The search for
the Higgs in the diphoton channel by ATLAS with 25/fb [2].
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An important search for the discovery of the Higgs.
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Background model

There is a monotonically falling background.

We could describe it by a basis of polynomials (e.g. Bernstein) but so
that we can perform many calculations, we just use a �xed background
and neglect parametric uncertainties in it.
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Signal model i

We model the signal predicted by a Higgs as a Gaussian centred at mh .

The width was the experimental resolution of about 1.5GeV.

We speci�ed the strength relative to the Standard Model prediction (at
125GeV),

µ= e�ciency × cross section
(e�ciency × cross section)SM @ 125GeV

This is an approximation as we did not model dependence of e�ciency
or cross section as functions of Higgs mass.
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Signal model ii

There were thus two unknown parameters describing the location and
strength of the resonance, mh and µ.
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Priors

For our Bayesian calculations, we must place priors on mh and µ. We
experiment with several choices.
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Priors

For our Bayesian calculations, we must place priors on mh and µ. We
experiment with several choices.
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We vary the breadth of the log prior for the signal strength, and the
shape of the prior.
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Data and pseudo-data

We use the real 25/fb collected by ATLAS [2].

We sample our own pseudo-data from the background model and the
signal + background model with µ= 1, mh = 125GeV.
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The models tell us the expected number of counts in each bin for a
particular integrated luminosity.

We sample pseudo-data at many integrated luminosities by drawing
counts from Poisson distributions in each bin.

20/25



The models tell us the expected number of counts in each bin for a
particular integrated luminosity.

We sample pseudo-data at many integrated luminosities by drawing
counts from Poisson distributions in each bin.

20/25



The models tell us the expected number of counts in each bin for a
particular integrated luminosity.

We sample pseudo-data at many integrated luminosities by drawing
counts from Poisson distributions in each bin.

20/25



The models tell us the expected number of counts in each bin for a
particular integrated luminosity.

We sample pseudo-data at many integrated luminosities by drawing
counts from Poisson distributions in each bin.

20/25



The models tell us the expected number of counts in each bin for a
particular integrated luminosity.

We sample pseudo-data at many integrated luminosities by drawing
counts from Poisson distributions in each bin.

20/25



The models tell us the expected number of counts in each bin for a
particular integrated luminosity.

We sample pseudo-data at many integrated luminosities by drawing
counts from Poisson distributions in each bin.

20/25



The models tell us the expected number of counts in each bin for a
particular integrated luminosity.

We sample pseudo-data at many integrated luminosities by drawing
counts from Poisson distributions in each bin.

20/25



The models tell us the expected number of counts in each bin for a
particular integrated luminosity.

We sample pseudo-data at many integrated luminosities by drawing
counts from Poisson distributions in each bin.

20/25



The models tell us the expected number of counts in each bin for a
particular integrated luminosity.

We sample pseudo-data at many integrated luminosities by drawing
counts from Poisson distributions in each bin.

20/25



The models tell us the expected number of counts in each bin for a
particular integrated luminosity.

We sample pseudo-data at many integrated luminosities by drawing
counts from Poisson distributions in each bin.

20/25



The models tell us the expected number of counts in each bin for a
particular integrated luminosity.

We sample pseudo-data at many integrated luminosities by drawing
counts from Poisson distributions in each bin.

20/25



The models tell us the expected number of counts in each bin for a
particular integrated luminosity.

We sample pseudo-data at many integrated luminosities by drawing
counts from Poisson distributions in each bin.

20/25



Evolution of p-value and posterior as we collect data
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The posterior slowly approaches 1 when the background model is correct
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and zero when the signal model is correct, though in this case there is an
extremely mild preference for the background model until about 10/fb.
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Evolution of p-value and posterior as we collect data
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The p-value makes a random walk between 0 and 1 when the
background model is correct
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and when the signal model is correct, it makes a (noisy) walk towards
zero.
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Evolution of p-value and posterior as we collect data
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Bayesian (top)/frequentist (bottom). Background model true (left)/signal
model true (right).
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Comparison between p-value and posterior

We performed about a million pseudo-experiments.
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The posterior of the background model about 102 – 103 times greater
than global p-value!
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The Bayes e�ect

The magnitude of the e�ect greater than the well-known look-elsewhere
e�ect.
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Prior dependence

We checked many priors. The e�ect could be reduced but remained
important.
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See paper [3] for full discussion about prior dependence of this e�ect.
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Conclusions



1. First detailed comparison of Bayesian and frequentist methods in
resonance searches

2. Posterior ultimately converged to 0 or 1; p-value makes random
walk if H0 correct

3. p-values overstate evidence against the null! p-value≪ posterior
of background model

4. Checked that the e�ect was robust with respect to several choices
of prior

5. When looking at an anomaly, we must remember the
look-elsewhere e�ect and the Bayes e�ect
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