CPT Symmetric Universe

Latham Boyle and Neil Turok*
Perimeter Institute

with Kieran Finn, 1803.08928; 1803.08930 Phys.Rev.Lett. 121 (2018) no.25, 251301

Just 4.5 numbers

```
energy - Dark matter/nuclear matter content Dark energy density

Scalar amplitude Scalar tilt
```

+ Standard Model including neutrino masses

Many quantities so far observed to be consistent with zero

$$g_{\mu\nu} = a(\tau)^2 \eta_{\mu\nu}$$

$$g_{\mu\nu} = a(\tau)^2 \eta_{\mu\nu}$$

simple pole

$$a(\tau) \sim (\tau_* - \tau)^{-1}$$

 $a(\tau) \sim \tau$

simple zero

new isometry $\tau \rightarrow -\tau$

$$a(\tau) \sim -(\tau_* + \tau)^{-1}$$

simple pole

new isometry $\tau \rightarrow -\tau$

new isometry au o - au preferred vacuum $igg|0igg
angle_{CPT}$

hypothesis: the universe does not spontaneously violate CPT

$$G_{\mu}, W_{\mu}, B_{\mu}, h$$

$$G_{\mu}, W_{\mu}, B_{\mu}, h$$

 $egin{aligned} d_L,u_L,d_R,u_R\ d_L,u_L,d_R,u_R\ d_L,u_L,d_R,u_R \end{aligned}$

$$G_{\mu}, W_{\mu}, B_{\mu}, h$$

```
egin{aligned} d_L, u_L, d_R, u_R \ d_L, u_L, d_R, u_R \ d_L, u_L, d_R, u_R \ e_L, 
u_L, e_R, 
u_R \end{aligned}
```

$$G_{\mu}, W_{\mu}, B_{\mu}, h$$

$$d_L, u_L, d_R, u_R$$
 d_L, u_L, d_R, u_R
 d_L, u_L, d_R, u_R
 e_L, ν_L, e_R, ν_R
 $x 3$

$$\psi = \sum_{h} \int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \left(a_{\vec{p},h} u(\vec{p},h,\vec{x}) + a_{\vec{p},h}^{\dagger} u^{c}(\vec{p},h,\vec{x}) \right)$$

$$\psi = \sum_{h} \int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \left(a_{\vec{p},h} u(\vec{p},h,\vec{x}) + a_{\vec{p},h}^{\dagger} u^{c}(\vec{p},h,\vec{x}) \right)$$

$$\psi = \sum_{h} \int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \left(a_{\vec{p},h} u(\vec{p},h,\vec{x}) + a_{\vec{p},h}^{\dagger} u^{c}(\vec{p},h,\vec{x}) \right)$$

 \mathcal{U}_{+}

$$a_{+} \Rightarrow |0\rangle_{+}$$

$$\psi = \sum_{h} \int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \left(a_{\vec{p},h} u(\vec{p},h,\vec{x}) + a_{\vec{p},h}^{\dagger} u^{c}(\vec{p},h,\vec{x}) \right)$$

$$u_{\scriptscriptstyle +}$$

$$a_{+} \Rightarrow |0\rangle_{+}$$

$$\mathcal{U}$$

$$a_{-} \Rightarrow |0\rangle_{-}$$

$$u_{CPT}$$

$$\mathcal{U}$$

$$a_{CPT} \Rightarrow |0\rangle_{CPT}$$

$$a_{-} \Rightarrow |0\rangle_{-}$$

$$\psi = \sum_{h} \int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \left(a_{\vec{p},h} u(\vec{p},h,\vec{x}) + a_{\vec{p},h}^{\dagger} u^{c}(\vec{p},h,\vec{x}) \right)$$

$$u_{+} \qquad a_{+} \Rightarrow |0\rangle_{+}$$

$$\left(u_{CPT}(\tau) \sim u_{CPT}^{c}(-\tau) \right) \qquad u_{CPT} \qquad a_{CPT} \Rightarrow |0\rangle_{CPT}$$

$$u_{-} \qquad a_{-} \Rightarrow |0\rangle_{-}$$

$$u_{CPT}(\vec{p},h,\vec{x}) = \alpha(\vec{p})u_{+}(\vec{p},h,\vec{x}) + \beta(\vec{p})u_{+}^{c}(\vec{p},h,\vec{x})$$

$$u_{CPT}(\vec{p},h,\vec{x}) = \alpha(\vec{p})u_{+}(\vec{p},h,\vec{x}) + \beta(\vec{p})u_{+}^{c}(\vec{p},h,\vec{x})$$

$$_{CPT}\left\langle 0\left|a_{+}^{\dagger}(\vec{p},h)a_{+}(\vec{p},h)\right|0\right\rangle _{CPT}=\left|\beta(\vec{p})\right|^{2}=e^{-\pi p^{2}\frac{M_{Pl}}{m_{dm}}\sqrt{\frac{3}{\rho_{rad}}}}$$

$$u_{CPT}(\vec{p}, h, \vec{x}) = \alpha(\vec{p})u_{+}(\vec{p}, h, \vec{x}) + \beta(\vec{p})u_{+}^{c}(\vec{p}, h, \vec{x})$$

$$_{CPT}\left\langle 0\left|a_{+}^{\dagger}(\vec{p},h)a_{+}(\vec{p},h)\right|0\right\rangle _{CPT}=\left|\beta(\vec{p})\right|^{2}=e^{-\pi p^{2}\frac{M_{Pl}}{m_{dm}}\sqrt{\frac{3}{\rho_{rad}}}}$$

Like Hawking Radiation

One stable neutrino: $\nu_R^{(1)}$

One stable neutrino: $\nu_R^{(1)}$ (\mathbb{Z}_2 symmetry: $\nu_R^{(1)} \to -\nu_R^{(1)}$)

One stable neutrino: $\nu_R^{(1)}$ (\mathbb{Z}_2 symmetry: $\nu_R^{(1)} \to -\nu_R^{(1)}$)

$$\frac{n_{\rm dm}}{s_{\rm rad}} = C \left(\frac{m_{dm}}{M_{pl}}\right)^{3/2} \qquad (C = 0.003476...)$$

One stable neutrino: $\nu_R^{(1)}$ (\mathbb{Z}_2 symmetry: $\nu_R^{(1)} \to -\nu_R^{(1)}$)

$$\frac{n_{\rm dm}}{s_{\rm rad}} = C \left(\frac{m_{dm}}{M_{pl}}\right)^{3/2} \qquad (C = 0.003476...)$$

$$m_{dm} = 4.8 \times 10^8 \text{GeV}$$

One stable neutrino: $\nu_R^{(1)}$ (\mathbb{Z}_2 symmetry: $\nu_R^{(1)} \to -\nu_R^{(1)}$)

$$\frac{n_{\rm dm}}{s_{\rm rad}} = C \left(\frac{m_{dm}}{M_{nl}}\right)^{3/2}$$
 (C = 0.003476...)

$$m_{dm} = 4.8 \times 10^8 \text{GeV}$$

detection?

Upgoing ANITA events as evidence of the CPT symmetric universe

Luis A. Anchordoqui, ^{1, 2, 3} Vernon Barger, ⁴ John G. Learned, ⁵ Danny Marfatia, ⁵ and Thomas J. Weiler ⁶

¹ Department of Physics & Astronomy, Lehman College, City University of New York, NY 10468, USA

² Department of Physics, Graduate Center, City University of New York, NY 10024, USA

³ Department of Astrophysics, American Museum of Natural History, NY 10024, USA

⁴ Department of Physics, University of Wisconsin, Madison, WI 53706, USA

⁵ Department of Physics & Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822, USA

⁶ Department of Physics & Astronomy, Vanderbilt University, Nashville TN 37235, USA

(Dated: April 1, 2018)

We explain the two upgoing ultra-high energy shower events observed by ANITA as arising from the decay in the Earth's core of the quasi-stable dark matter candidate in the CPT symmetric universe. The dark matter particle is a 480 PeV right-handed neutrino that decays into a Higgs and a light Majorana neutrino. The latter interacts in the Earth's crust to produce a τ lepton that in turn initiate an atmospheric upgoing shower.

The three balloon flights of the ANITA experiment have resulted in the observation of two unusual upgoing showers with energies of (600 ± 400) PeV $\boxed{1}$ and (560^{+300}_{-200}) PeV $\boxed{2}$. The energy estimates are made un-

with the non-observation of similar events at cosmic ray facilities and IceCube.

Cosmic ray facilities have seen downgoing shower events with energies up to $\sim 10^5$ PeV, but have not

hep-ph] 30 Mar 2018

 $\sum m_{\rm v} \approx .06 eV(NH) \text{ or } .12 eV(IH)$

 $\sum m_{\rm v} \approx .06 eV(NH)$ or .12 eV(IH)

(Brinckmann et al, arXiv:1808.05955)

 $\sum m_{\rm v} \approx .06 eV(NH) \text{ or } .12 eV(IH)$

 $0\nu\beta\beta$ decay:

(Brinckmann et al, arXiv:1808.05955)

 $\sum m_{\rm v} \approx .06 eV(NH) \text{ or } .12 eV(IH)$

 $0\nu\beta\beta$ decay:

(Brinckmann et al, arXiv:1808.05955)

(Dell'Oro et al, arXiv:1601.07512)

- No primordial tensor perturbations (GWs)
- No primordial vector perturbations (vorticity)

• Other predictions:

- No primordial tensor perturbations (GWs)
- No primordial vector perturbations (vorticity)
- No decaying-mode scalar perturbations (correct CMB peaks)

- Other predictions:
 - No primordial tensor perturbations (GWs)
 - No primordial vector perturbations (vorticity)
 - No decaying-mode scalar perturbations (correct CMB peaks)
- Work in progress:

• Other predictions:

- No primordial tensor perturbations (GWs)
- No primordial vector perturbations (vorticity)
- No decaying-mode scalar perturbations (correct CMB peaks)

Work in progress:

Homogeneity and isotropy

• Other predictions:

- No primordial tensor perturbations (GWs)
- No primordial vector perturbations (vorticity)
- No decaying-mode scalar perturbations (correct CMB peaks)

Work in progress:

- Homogeneity and isotropy
- Primordial scalar power spectrum from conformal anomaly

Other predictions:

- No primordial tensor perturbations (GWs)
- No primordial vector perturbations (vorticity)
- No decaying-mode scalar perturbations (correct CMB peaks)

Work in progress:

- Homogeneity and isotropy
- Primordial scalar power spectrum from conformal anomaly
- Electrodynamic arrow of time

Other predictions:

- No primordial tensor perturbations (GWs)
- No primordial vector perturbations (vorticity)
- No decaying-mode scalar perturbations (correct CMB peaks)

Work in progress:

- Homogeneity and isotropy
- Primordial scalar power spectrum from conformal anomaly
- Electrodynamic arrow of time
- Boundary conditions for quantum cosmology

Other predictions:

- No primordial tensor perturbations (GWs)
- No primordial vector perturbations (vorticity)
- No decaying-mode scalar perturbations (correct CMB peaks)

Work in progress:

- Homogeneity and isotropy
- Primordial scalar power spectrum from conformal anomaly
- Electrodynamic arrow of time
- Boundary conditions for quantum cosmology

Thank you!

most probable universe:

spatially flat, homogeneous and isotropic

space and time are emergent

CPT symmetry ⇒ matter-antimatter asymmetry

dark matter can consist of right handed neutrinos

scale invariant perturbations from conformal anomaly In the standard model (in progress)

w/L. Boyle and K. Finn

The dark matter has been hiding in plain sight: its right handed neutrinos!

can impose discrete symmetry $V_{R,1} \rightarrow -V_{R,1}$ (i.e. reduce SM coupling space), renders one rh neutrino stable

Couples only to gravity - in CPT symmetric vacuum, outgoing particle density nonzero

$$\Rightarrow m_{v_R} = 4.8 \times 10^8 \, GeV$$

Predict:

- one of left handed neutrinos is massless (at tree level)

$$\sum m_{\rm v} \approx .06 eV(NH) \text{ or } .12 eV(IH)$$

- testable via cosmic structure formation
- double beta decay rate

how will we know?

Forthcoming CMB+galaxy measurements (S4+DESI)

$$\Rightarrow \sigma(\sum m_{v}) \approx .02eV$$

a new experiment, 10x size of CHIME, could set a much tighter bound

Experimental confirmation of the state of th

Upgoing ANITA events as evidence of the CPT symmetric universe

Luis A. Anchordoqui, ^{1, 2, 3} Vernon Barger, ⁴ John G. Learned, ⁵ Danny Marfatia, ⁵ and Thomas J. Weiler ⁶

¹Department of Physics & Astronomy, Lehman College, City University of New York, NY 10468, USA

²Department of Physics, Graduate Center, City University of New York, NY 10016, USA

³Department of Astrophysics, American Museum of Natural History, NY 10024, USA

⁴Department of Physics, University of Wisconsin, Madison, WI 53706, USA

⁵Department of Physics & Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822, USA

⁶Department of Physics & Astronomy, Vanderbilt University, Nashville TN 37235, USA

We explain the two upgoing ultra-high energy shower events observed by ANITA as arising from the decay in the Earth's interior of the quasi-stable dark matter candidate in the CPT symmetric universe. The dark matter particle is a 480 PeV right-handed neutrino that decays into a Higgs boson and a light Majorana neutrino. The latter interacts in the Earth's crust to produce a τ lepton that in turn initiates an atmospheric upgoing shower. The fact that both events emerge at the same angle from the Antarctic ice-cap suggests an atypical dark matter density distribution in the Earth.

FLRW background in conformal coordinates

$$ds^{2} = a(\eta)^{2}(-d\eta^{2} + d\vec{x}^{2}),$$

dark energy

natural continuation to $\eta < 0$

radiation

classical background invariant under time reversal symmetry $\eta \longleftrightarrow -\eta$

dark energy

