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Just 4.5 numbers

Nucleons per photon

energy < Dark matter/nuclear matter
content
| Dark energy density

' Scalar amplitude
geometry -

Scalar ftilt

+ Standard Model including neutrino masses
Many quantities so far observed to be consistent with zero
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hypothesis:

the universe does not spontaneously violate CPT
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Like Hawking Radiation
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ion?
d e t e C t 1 O ° We explain the two upgoing ultra-high energy shower events observed by ANITA as arising from the

decay in the Earth’s core of the quasi-stable dark matter candidate in the CPT symmetric universe.
The dark matter particle is a 480 PeV right-handed neutrino that decays into a Higgs and a light
Majorana neutrino. The latter interacts in the Earth’s crust to produce a 7 lepton that in turn
initiate an atmospheric upgoing shower.

The three balloon flights of the ANITA experiment  with the non-observation of similar events at cosmic ray
have resulted in the observation of two unusual upgo- facilities and IceCube.
ing showers with energies of (600 £ 400) PeV [1] and

300 ; Cosmic ray facilities have seen downgoing shower
(5601309) PeV [2]. The energy estimates are made un-

events with energies up to ~ 10° PeV, but have not
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e Other predictions:
— No primordial tensor perturbations (GWs)
— No primordial vector perturbations (vorticity)
— No decaying-mode scalar perturbations (correct CMB peaks)

 Work in progress:
— Homogeneity and isotropy
— Primordial scalar power spectrum from conformal anomaly
— Electrodynamic arrow of time
— Boundary conditions for quantum cosmology

 Thank youl!




most probable universe:
spatially flat, homogeneous and isotropic

space and time are emergent

CPT symmetry = matter-antimatter asymmetry
dark maftter can consist of right handed neutrinos

scale invariant perturbations from conformal anomaly
In the standard model (in progress)

2 a new, simpler cosmology is in prospect




w/L. Boyle and K. Finn

The dark matter has been hiding in plain sight:
its ight handed neutrinos!

can impose discrete symmetry Vi, — =V,
(i.e. reduce SM coupling space),
renders one rh neuftrino stable

Couples only to gravity - in CPT symmetric

vacuum, outgoing particle density nonzero
=>m, =4.8X 10°GeV
Predict: - one of left handed neutrinos is massless (at tree level)

Y m, =.06eV (NH) or .12eV (IH)

- tfestable via cosmic structure formation

- double beta decay rate




how will we know?e

Forthcoming
CMB+galaxy = G(z m )=.02elV
measurements

(S4+DESI)

a new experiment,10x size of CHIME, could set o
much tighter bound




Experimental confirmatigipidue
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We explain the two upgoing ultra-high energy shower events observed by ANITA as arising from
the decay in the Earth’s interior of the quasi-stable dark matter candidate in the CPT symmetric
universe. The dark matter particle is a 480 PeV right-handed neutrino that decays into a Higgs
boson and a light Majorana neutrino. The latter interacts in the Earth’s crust to produce a 7 lepton
that in turn initiates an atmospheric upgoing shower. The fact that both events emerge at the same
angle from the Antarctic ice-cap suggests an atypical dark matter density distribution in the Earth.
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