#### Grand Unification and Weak Gravity Conjecture

#### Qaisar Shafi

Bartol Research Institute Department of Physics and Astronomy University of Delaware



B. Ananthanarayan, M. Bastero-Gil, S. Boucenna, G. Dvali, I. Gogoladze, M. Gomez, A. Hebbar, T. Kibble, S. King, B. Kyae, G. Lazarides, G. Leontaris, A. Pal, C. Pallis, N. Okada, D. Raut, M. Rehman, N. Senoguz, C.S. Un

PASCOS 2019, Manchester July 2019

#### Grand Unified Theories (GUTs)

- Unification of SM/MSSM gauge couplings
- Unification of matter/quark-lepton multiplets
- Electric charge quantization, Magnetic monopoles predicted (as Dirac wanted)
- Proton Decay
- $b \tau$  Yukawa unification in realistic models.
- Seesaw physics, neutrino oscillations
- Baryogenesis/leptogenesis
- $\bullet$  Inflation/gravity waves,  $\delta\rho/\rho$  and cosmic strings

#### Gauge Coupling Unification in Non-SUSY SU(5)



Gauge Coupling Unification in the SU(5) model with additional fermions  $Q + \bar{Q} + D + \bar{D}$  at mass scale  $\sim (1 - 10)$  TeV.

# Non-SUSY SO(10)

Usually broken via one or more intermediate steps to the SM

- $G = SO(10)/\mathrm{Spin}(10)$
- $H = SU(3)_c \times U(1)_{e.m.}$
- $\Pi_2(G/H) \cong \Pi_1(H) \Rightarrow$  Monopoles
- $\Pi_1(G/H) \cong \Pi_0(H) = \mathbb{Z}_2 \Rightarrow$  Cosmic Strings (provided  $G \to H$  breaking uses only tensor representations)

• 
$$\mathbb{Z}_2 \subset \mathbb{Z}_4$$
 (center of  $SO(10)$ )  
[T. Kibble, G. Lazarides, Q.S., PLB, 1982]

- Intermediate scale monopoles and cosmic strings may survive inflation.
- Recent work suggests that this  $Z_2$  symmetry can yield plausible cold dark matter candidates. [Mario Kadastik, Kristjan Kannike, and Martti Raidal Phys. Rev. D 81 (2010), 015002; Yann Mambrini, Natsumi Nagata, Keith A. Olive, Jeremi Quevillon, and Jiaming Zheng Phys.Rev. D91 (2015) no.9, 095010; Sofiane M. Boucenna, Martin B. Krauss, Enrico Nardi Phys.Lett. B755 (2016) 168-17]

#### Magnetic Monopoles in Unified Theories

Any unified theory with electric charge quantization predicts the existence of topologically stable ('tHooft-Polyakov ) magnetic monopoles. Their mass is about an order of magnitude larger than the associated symmetry breaking scale.

Examples:

SU(5) → SM (3-2-1) Lightest monopole carries one unit of Dirac magnetic charge even though there exist fractionally charged quarks;



2  $SU(4)_c \times SU(2)_L \times SU(2)_R$  (Pati-Salam)

Electric charge is quantized with the smallest permissible charge being  $\pm(e/6)$ ; Lightest monopole carries two units of Dirac magnetic charge;

Two sets of monopoles: First breaking produces monopoles with a single unit of Dirac charge. Second breaking yields monopoles with two Dirac units.

- E<sub>6</sub> breaking to the SM can yield intermediate mass monopoles carrying three units of Dirac charge.

The discovery of primordial magnetic monopoles would have far-reaching implications for high energy physics & cosmology.

# $SU(4)_c \times SU(2)_L \times SU(2)_R \to SU(3)_c \times U(1)_{B-L} \times SU(2)_L \times U(1)_R$ $\to SU(3)_c \times SU(2)_L \times U(1)_Y \tag{1}$



#### **Cosmic Necklaces**





FIG. 2: Necklace with  $SU(4)_c$  and  $SU(2)_R$  monopoles from the symmetry breaking  $SU(4)_c \times SU(2)_L \times SU(2)_R \rightarrow$  $SU(3)_c \times U(1)_{R-L} \times SU(2)_c \times U(1)_R \rightarrow SU(3)_c \times SU(2)_L \times$  $U(1)_Y \times Z_2$ , where the last step is achieved by a **126**-plet of SO(10). Notation as in Fig. 1. We display explicitly only the Coulomb magnetic flux of two of the monopoles and the magnetic flux along one of the tubes. This necklace may survive inflation.

FIG. 3: Necklace with  $SU(4)_{c}$  monopoles (red) and antimonopoles (green) from the symmetry breaking  $SO(10) \rightarrow SU(4)_{c} \times SU(2)_{c} \times U(1)_{R} \rightarrow SU(3)_{c} \times SU(2)_{L} \times U(1)_{R} \rightarrow SU(3)_{c} \times SU(2)_{L} \times U(1)_{R} \rightarrow SU(3)_{c} \times SU(3)_{c$ 

#### Cosmic Strings from SO(10)

Cosmic Strings arise during symmetry breaking of  $G \to H$  if  $\pi_1(G/H)$  is non-trivial.

Consider  $SO(10) \xrightarrow{M_{GUT}} SU(4) \times SU(2)_L \times SU(2)_R \xrightarrow{M_I} SM \times Z_2$ 

Mass per unit length of string is  $\mu \sim M_I^2$ , with  $M_I \ll M_P$ .

The strength of string gravity is determined by the dimensionless parameter  $G\mu \ll 1$ .

For this talk  $G\mu \sim 10^{-12}$  or so, such that strings, analogous to monopoles, can survive inflation.





Stochastic gravitational wave backgrounds compared with present and future experiments. The grey lines show the background from cosmic strings with the indicated energy scales  $G\mu$ . The straight black line is the largest allowable background from SMBBH.[Blanco-Pillado, Olum and Siemens, arxiv: 1709.02434]

Successful Primordial Inflation should:

- Explain flatness, isotropy;
- Provide origin of  $\frac{\delta T}{T}$ ;
- Offer testable predictions for  $n_s, r$  (gravity waves),  $dn_s/d \ln k$ ;
- Recover Hot Big Bang Cosmology;
- Explain the observed baryon asymmetry;
- Offer plausible CDM candidate;

#### Slow-roll Inflation

- Inflation is driven by some potential  $V(\phi)$ :
- Slow-roll parameters:

$$\epsilon = \frac{m_p^2}{2} \left(\frac{V'}{V}\right)^2, \ \eta = m_p^2 \left(\frac{V''}{V}\right).$$

• The spectral index  $n_{s}$  and the tensor to scalar ratio r are given by

$$n_s - 1 \equiv \frac{d \ln \Delta_R^2}{d \ln k}$$
,  $r \equiv \frac{\Delta_h^2}{\Delta_R^2}$ ,

where  $\Delta_h^2$  and  $\Delta_R^2$  are the spectra of primordial gravity waves and curvature perturbation respectively.

• Assuming slow-roll approximation (i.e.  $(\epsilon, |\eta|) \ll 1$ ), the spectral index  $n_s$  and the tensor to scalar ratio r are given by

$$n_s \simeq 1 - 6\epsilon + 2\eta$$
,  $r \simeq 16\epsilon$ .

#### Constraint on Inflation Planck (2018), BK (2015)



#### Inflation with a CW Higgs Potential



Note: This is for minimal coupling to gravity



Note: This is for minimal coupling to gravity



Note: This is for minimal coupling to gravity

| $V_0^{1/4}({ m GeV})$                  | $V(\phi_0)^{1/4}({ m GeV})$ | $A(10^{-14})$ | v    | $\phi_0$ | $\phi_e$ | $n_s$ | r     | $-\alpha(10^{-4})$ |
|----------------------------------------|-----------------------------|---------------|------|----------|----------|-------|-------|--------------------|
| solutions below the VEV ( $\phi < v$ ) |                             |               |      |          |          |       |       |                    |
| $1. \times 10^{16}$                    | $9.92 	imes 10^{15}$        | 4.37          | 12.7 | 3.38     | 11.4     | 0.954 | 0.008 | 5.97               |
| $1.5 \times 10^{16}$                   | $1.43 \times 10^{16}$       | 2.41          | 22.1 | 10.2     | 20.8     | 0.964 | 0.036 | 4.87               |
| $1.75 \times 10^{16}$                  | $1.58 	imes 10^{16}$        | 1.43          | 29.4 | 16.5     | 28.0     | 0.967 | 0.055 | 4.95               |
| $2. \times 10^{16}$                    | $1.7 	imes 10^{16}$         | 0.812         | 38.7 | 25.1     | 37.3     | 0.968 | 0.072 | 5.09               |



Note: This is for minimal coupling to gravity

#### Primordial Monopoles in $SO(10) \rightarrow 4-2-2 \rightarrow 3-2-1$

- Let's consider how much dilution of the monopoles is necessary.  $M_I \sim 10^{13}$  GeV corresponds to monopole masses of order  $M_M \sim 10^{14}$  GeV. For these intermediate mass monopoles the MACRO experiment has put an upper bound on the flux of  $2.8 \times 10^{-16}$  cm<sup>-2</sup> s<sup>-1</sup> sr<sup>-1</sup>. For monopole mass  $\sim 10^{14}$  GeV, this bound corresponds to a monopole number per comoving volume of  $Y_M \equiv n_M/s \lesssim 10^{-27}$ . There is also a stronger but indirect bound on the flux of  $(M_M/10^{17} \text{ GeV})10^{-16}$ cm<sup>-2</sup> s<sup>-1</sup> sr<sup>-1</sup> obtained by considering the evolution of the seed Galactic magnetic field.
- At production, the monopole number density  $n_M$  is of order  $H_x^3$ , which gets diluted to  $H_x^3 e^{-3N_x}$ , where  $N_x$  is the number of *e*-folds after  $\phi = \phi_x$ . Using

$$Y_M \sim \frac{H_x^3 e^{-3N_x}}{s} \,,$$

where  $s=(2\pi^2g_S/45)T_r^3$ , we find that sufficient dilution requires  $N_x\gtrsim \ln(H_x/T_r)+20.$  Thus, for  $T_r\sim 10^9$  GeV,  $N_x\gtrsim 30$  yields a monopole flux close to the observable level.

## Unique Low Scale Single Field Inflation Scenario: Inflection-point Inflation (IPI) [N. Okada and D. Raut, PRD, 2017]

• A unique realization of low-scale slow-roll inflation driven by a single scalar field



M is the value of the inflaton field  $\phi$  at the start of inflation.

Inflection-point Inflation [N. Okada and D. Raut, PRD, 2017]

- How to realize an IPI?
  - Consider a gauged-Higgs Model: Identify inflaton ( $\phi$ ) to be a Higgs field Inflaton has both gauge and Yukawa interaction
  - **2**  $V'(M) \simeq 0 \& V''(M) \simeq 0$ :

• 
$$\lambda(M) \simeq 4.77 \times 10^{-16} \left(\frac{M}{M_P}\right)^2 \left(\frac{60}{N}\right)^4$$

• 
$$\beta_{\lambda}(M) = \#g(M)^4 - \#Y(M)^4 \simeq 0$$
  
 $g(M), Y(M) \ll 1$ : Model Dependent

- IPI constraint and predictions:
  - Theoretical consistency:  $M < 5.67 M_P$
  - Inflationary measurement fixes  $n_S$

  - Unique prediction:  $\alpha_S \simeq -2.742 \times 10^{-3} \left(\frac{60}{N}\right)^2$  (N=60)  $H_{inf} < 1.5 \times 10^{10} \text{GeV} \times \left(\frac{M}{M_P}\right)^3$  $\Rightarrow r < 3.7 \times 10^{-9} \left(\frac{M}{M_P}\right)^6 \ll 1$

 $SO(10) imes U(1)_\psi$  W/  ${\sf IPI}$  [N. Okada, D. Raut, and Q. Shafi 2019 ()]



[Dvali, Shafi, Schaefer; Copeland, Liddle, Lyth, Stewart, Wands '94] [Lazarides, Schaefer, Shafi '97][Senoguz, Shafi '04; Linde, Riotto '97] [Buchmüller, Domcke and Schmitz]

- $\bullet$  Attractive scenario in which inflation can be associated with symmetry breaking  $G \longrightarrow H$
- Simplest inflation model is based on

$$W = \kappa \, S \left( \Phi \, \overline{\Phi} - M^2 \right)$$

S= gauge singlet superfield,  $(\Phi\,,\overline{\Phi})$  belong to suitable representation of G

- Need  $\Phi, \overline{\Phi}$  pair in order to preserve SUSY while breaking  $G \longrightarrow H$  at scale  $M \gg$  TeV, SUSY breaking scale.
- R-symmetry

$$\Phi \ \overline{\Phi} \to \Phi \ \overline{\Phi}, \ S \to e^{i\alpha} \ S, \ W \to e^{i\alpha} \ W$$

• Tree Level Potential

$$V_F = \kappa^2 \left( M^2 - |\Phi^2| \right)^2 + 2\kappa^2 |S|^2 |\Phi|^2$$

• SUSY vacua

$$|\langle \overline{\Phi} \rangle| = |\langle \Phi \rangle| = M, \ \langle S \rangle = 0$$



Take into account radiative corrections (because during inflation  $V \neq 0$  and SUSY is broken by  $F_S = -\kappa M^2$ )

• Mass splitting in  $\Phi - \overline{\Phi}$ 

$$m_{\pm}^2 = \kappa^2 \, S^2 \pm \kappa^2 \, M^2 \text{,} \quad m_F^2 = \kappa^2 \, S^2$$

• One-loop radiative corrections

$$\Delta V_{1\mathsf{loop}} = \frac{1}{64\pi^2} \mathsf{Str}[\mathcal{M}^4(S)(\ln \frac{\mathcal{M}^2(S)}{Q^2} - \frac{3}{2})]$$

• In the inflationary valley (  $\Phi=0)$ 

$$V\simeq \kappa^2\,M^4\left(1+\tfrac{\kappa^2\mathcal{N}}{8\pi^2}F(x)\right)$$

where x = |S|/M and

$$F(x) = \frac{1}{4} \left( \left( x^4 + 1 \right) \ln \frac{\left( x^4 - 1 \right)}{x^4} + 2x^2 \ln \frac{x^2 + 1}{x^2 - 1} + 2 \ln \frac{\kappa^2 M^2 x^2}{Q^2} - 3 \right)$$

Tree level + radiative corrections + minimal Kähler potential yield:

$$n_s = 1 - \frac{1}{N} \approx 0.98.$$

 $\delta T/T$  proportional to  $M^2/M_p^2$ , where M denotes the gauge symmetry breaking scale. Thus we expect  $M\sim M_{GUT}$  for this simple model. In practice,  $M\approx (1-5)\times 10^{15}~{\rm GeV}$ 

Since observations suggest that  $n_s$  lie close to 0.97, there are at least two ways to realize this slightly lower value:

- include soft SUSY breaking terms, especially a linear term in S;
- employ non-minimal Kähler potential.



[Pallis, Shafi, 2013; Rehman, Shafi, Wickman, 2010]

•  $K \supset \kappa_s (S^{\dagger}S)^2$ 



[M. Bastero-Gil, S. F. King and Q. Shafi, 2006]

#### Yukawa Unification in GUTs



#### $b-\tau$ Yukawa coupling unification

#### *b*- $\tau$ YU and finite threshold corrections <sup>1</sup>

Dominant contributions to the bottom quark mass from the gluino and chargino loop

$$\delta y_b \approx \frac{g_3^2}{12\pi^2} \frac{\mu m_{\tilde{g}} \tan \beta}{m_1^2} + \frac{y_t^2}{32\pi^2} \frac{\mu A_t \tan \beta}{m_2^2} + \dots$$

where  $m_1 pprox (m_{{\widetilde b}_1}+m_{{\widetilde b}_2})/2$  and  $m_2 pprox (m_{{\widetilde t}_2}+\mu)/2$ 



where 
$$\lambda_b = y_b$$
 and  $\lambda_t = y_t$   
<sup>1</sup>L. J. Hall, R. Rattazzi and U. Sarid, Phys. Rev.D 50, 7048 (1994)

30 / 45

イロト イヨト イヨト イヨト

 $\begin{array}{l} \mathsf{SUSY}\ SU(4)_C\times SU(2)_L\times SU(2)_R\\ \mathsf{without}\ \mathsf{Discrete}\ L\leftrightarrow R\ \mathsf{Symmetry}\ \mathsf{M}.\ \mathsf{Gomez},\ \mathsf{C}.\ \mathsf{S}\ \mathsf{Un},\ \mathsf{and}\ \mathsf{Q}.\ \mathsf{Shafi} \end{array}$ 



• Orange:  $(t - b - \tau)$  Yukawa Unification

• Red ( $\supset$  Orange  $\supset$  Green  $\supset$  Grey): Dark Matter

#### SUSY $SU(4)_C \times SU(2)_L \times SU(2)_R$ without Discrete $L \leftrightarrow R$ Symmetrym. Gomez, C. S Un, and Q. Shafi



• Red:  $(t - b - \tau)$  YU and Neutralino Dark Matter

#### SUSY $SU(4)_C \times SU(2)_L \times SU(2)_R$ without Discrete $L \leftrightarrow R$ Symmetrym. Gomez, C. S Un, and Q. Shafi



#### SUSY $SU(4)_C \times SU(2)_L \times SU(2)_R$ without Discrete $L \leftrightarrow R$ Symmetry M. Gomez, C. S Un, and Q. Shafi



#### SUSY $SU(4)_C \times SU(2)_L \times SU(2)_R$ without Discrete $L \leftrightarrow R$ Symmetry M. Gomez, C. S Un, and Q. Shafi

|                                                          | Point 1                | Point 2                | Point 3                | Point 4                | Point 5               |  |
|----------------------------------------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------|--|
| $m_{\tilde{L}}$                                          | 9461                   | 8031                   | 781                    | 1202                   | 3714                  |  |
| $M_1$                                                    | -4810                  | 1786                   | -1288                  | -3653                  | -4502                 |  |
| $M_{2L}$                                                 | 3915                   | 2859                   | 758.5                  | 1559                   | 2348                  |  |
| $M_3$                                                    | -926                   | -316.7                 | -2904                  | -2802                  | -2537                 |  |
| $A_0/m_{\tilde{L}}$                                      | -0.13                  | -1.06                  | 1.57                   | 1.16                   | 1.30                  |  |
| $\tan \beta$                                             | 47.8                   | 48.0                   | 43.8                   | 42.6                   | 52.4                  |  |
| $x_{LR}$                                                 | 0.78                   | 1.43                   | 0.83                   | 1.45                   | 0.84                  |  |
| $y_{LR}$                                                 | -1.89                  | 1.11                   | -0.28                  | -2.71                  | -2.47                 |  |
| $m_{\tilde{R}}$                                          | 7398                   | 11460                  | 646.9                  | 1740                   | 3111                  |  |
| $M_{2R}$                                                 | -7399                  | 3188                   | -210.1                 | -4221                  | -5811                 |  |
| μ                                                        | 6401                   | 8416                   | 3431                   | 3398                   | 894.4                 |  |
| $m_h$                                                    | 123.2                  | 124.3                  | 123.2                  | 123.1                  | 124.1                 |  |
| $m_H$                                                    | 5568                   | 6205                   | 1088                   | 1549                   | 2432                  |  |
| $m_A$                                                    | 5531                   | 6164                   | 1081                   | 1539                   | 2417                  |  |
| $m_{H^{\pm}}$                                            | 5568                   | 6206                   | 1093                   | 1552                   | 2434                  |  |
| $m_{	ilde{\chi}_{1}^{0}}, m_{	ilde{\chi}_{2}^{0}}$       | <b>2259</b> , 3438     | 849.6, 2530            | 558.1, 711.6           | 1387, 1638             | 850.6, 853.3          |  |
| $m_{	ilde{\chi}^0_3}, m_{	ilde{\chi}^0_4}$               | 5962, 5962             | 7757, 7757             | 3190, 3190             | 3165, 3165             | 2044, 2058            |  |
| $m_{\tilde{\chi}_{1}^{\pm}}, m_{\tilde{\chi}_{2}^{\pm}}$ | 3439, 5962             | 2535, 7710             | 713.8, 3162            | 1389, 3137             | 871.5, 2018           |  |
| $M_{\tilde{g}}$                                          | 2357                   | 933.9                  | 5954                   | 5781                   | 5360                  |  |
| $m_{\tilde{u}_L}, m_{\tilde{u}_R}$                       | 9906, 7462             | 8183, 11379            | 5172, 5145             | 5163, 5294             | 6019, 5540            |  |
| $m_{\tilde{t}_1}, m_{\tilde{t}_2}$                       | 4763, 7707             | 4075, 9113             | 4371, 4506             | 4331, 4564             | 3523, 4338            |  |
| $m_{\tilde{d}_I}, m_{\tilde{d}_B}$                       | 9906, 7623             | 8183, 11558            | 5173, 5151             | 5164, 5258             | 6019, 5516            |  |
| $m_{\tilde{b}_1}, m_{\tilde{b}_2}$                       | 3491, 7690             | 4131, 8784             | 4340, 4490             | 4327, 4466             | 3556, 4327            |  |
| $m_{\bar{\nu}_{e,\mu}}, m_{\bar{\nu}_{\tau}}$            | 9720, 8794             | 8104, 6498             | 909.3, 905.6           | 1668, 1449             | 4042, 3245            |  |
| $m_{\tilde{e}_L}, m_{\tilde{e}_R}$                       | 9714, 7811             | 8110, 11641            | 914.7, 843.7           | 1667, 2236             | 4043, 3600            |  |
| $m_{	au_1}, m_{	au_2}$                                   | 5167, 8783             | 6509, 9396             | 605.6, 988.1           | <b>1436</b> , 1896     | 1178, 3245            |  |
| $\sigma_{SI} (pb)$                                       | $0.71 \times 10^{-12}$ | $0.40 \times 10^{-14}$ | $0.13 \times 10^{-13}$ | $0.47 \times 10^{-10}$ | $0.19 \times 10^{-9}$ |  |
| $\sigma_{SD} (pb)$                                       | $0.48 \times 10^{-10}$ | $0.16 	imes 10^{-10}$  | $0.68 \times 10^{-9}$  | $0.17 \times 10^{-7}$  | $0.29 \times 10^{-6}$ |  |
| $\Omega h^2$                                             | 0.124                  | 0.116                  | 0.122                  | 0.120                  | 0.125                 |  |
| $R_{tb\tau}$                                             | 1.08                   | 1.04                   | 1.09                   | 1.08                   | 1.09                  |  |

Weak gravity conjecture suggests the presence of an ultraviolet cutoff  $\Lambda$  that lies between  $M_{GUT}$  and  $M_{Planck}.$ 

[Slogan: Gravity is the weakest force.]

Effective field theory description holds for scales below  $\Lambda$ .

For U(1) gauge theory there exists a particle with charge q > m, where m is measured in Planck units; this means U(1) breaking vev  $< M_P$ .

• Requirement that extremal black holes can decay;



- Global symmetry not compatible with quantum gravity, so we cannot take  $q \to 0$  limit;
- String theory only possesses gauge symmetries.

For GUTs,  $\Lambda \sim \alpha_{\Lambda}^{1/2} \times M_P \sim 5 \times 10^{17}$  GeV for SUSY GUTs.

| Group                   | Represe                                     | entations |                    |           |               |      |
|-------------------------|---------------------------------------------|-----------|--------------------|-----------|---------------|------|
|                         |                                             | Matter    |                    |           |               |      |
| SU(5)                   | $F_i(\bar{5}) \mid T_i(10) \mid \nu_i^c(1)$ |           |                    |           |               |      |
| $2\sqrt{10}U(1)\chi$    | 3 -1 -5                                     |           |                    |           |               |      |
| Scalars                 |                                             |           |                    |           |               |      |
| SU(5)                   | $\Phi(24)$                                  | H(5)      | $\bar{H}(\bar{5})$ | $\chi(1)$ | $ar{\chi}(1)$ | S(1) |
| $2\sqrt{10}U(1)_{\chi}$ | 0                                           | 2         | -2                 | 10        | -10           | 0    |

Table: Matter and Higgs content in minimal  $SU(5) \times U(1)_{\chi}$ .  $\chi, \bar{\chi}$  fields implement  $U(1)_{\chi}$  breaking and  $\bar{\chi}$  provides masses to the right handed neutrinos,  $\nu_i^c$ . The singlet S plays an important role during inflation.

# $SU(5) \times U(1)_{\chi}(\chi SU(5))$ : Salient Features

- $U(1)_{\chi}$  prevents rapid proton decay
- $U(1)_{\chi} \rightarrow Z_2$ ('matter parity'); Stable LSP.
- Observable Proton Decay
- Stable Cosmic Strings
- Yukawa Unification

# $SU(5) \times U(1)_{\chi}(\chi SU(5))$ : Gauge Coupling Unification



Figure: Running of gauge couplings in MSSM and  $\chi SU(5)$ . Unification of the  $\chi SU(5)$  gauge couplings occurs at  $\Lambda\approx5\times10^{17}{\rm GeV}.$   $\mu_{\chi}=10^{14}{\rm GeV}$  denotes the  $U(1)_{\chi}$  symmetry breaking scale and  $M_P=2.4\times10^{18}{\rm GeV}$  is the reduced Planck scale.

# $SU(5) \times U(1)_{\chi}(\chi SU(5))$ : Dim-5 Operator and Proton Lifetime

- Dimension five operator  $\frac{\eta}{\Lambda}Tr(F\cdot F\Phi)$  modifies conditions for GCU.
  - $(1+\epsilon)^{1/2}g_1(M_X) = (1+6\epsilon)^{1/2}g_2(M_X) = (1-4\epsilon)^{1/2}g_3(M_X).$



Figure: Left: Unification scale  $M_X$  as a function of  $\epsilon$ . Right: Proton Lifetime vs.  $\epsilon$ (blue line). The green line denotes the  $2\sigma$  experimental bound on proton lifetime set by Super-K, and the red line is the expected  $2\sigma$  sensitivity at Hyper-K.

## $SU(5) \times U(1)_{\chi}(\chi SU(5))$ : Dim-5 Operator and Yukawa Unification

Dimension Five terms can also affect the fermion masses [ Panagiotakopoulos and Shafi, 1984; Wiesenfeldt, 2005; Calmet and Yang, 2011;].

Consider

$$\frac{\varepsilon_{\alpha\beta\mu\nu\delta}}{\Lambda} \left( f_{ij} F_i^{\alpha\beta} T_j^{\mu\nu} \Phi_{\rho}^{\delta} \bar{H}^{\rho} + f_{ij}' F_i^{\alpha\beta} T_j^{\mu\rho} \bar{H}^{\nu} \Phi_{\rho}^{\delta} \right) + h.c.$$

The condition for YU in the third family is modified to

$$y_b - y_\tau \approx 5f'_{33} \frac{M_{GUT}}{\Lambda}.$$

## $SU(5) \times U(1)_{\chi}(\chi SU(5))$ : Dim-5 Operator and Yukawa Unification



Figure: Left:  $y_b/y_{\tau}$  versus  $\mu$ , the energy scale, for  $\tan\beta = 20$ .  $y_b - y_{\tau}$  at  $M_{GUT}$  are 0 (top curve) and -0.01 (bottom curve).  $\delta_b^{finite}$  denote the size of the finite one loop corrections to  $y_b$ . Right: Corresponding figure for  $\tan\beta = 50$ .  $y_b - y_{\tau}$  at  $M_{GUT}$  are 0.06 (top), 0 (middle) and -0.04 (bottom).

- Unification of all forces remains a compelling idea.
- Grand unification explains charge quantization, predicts monopoles and proton decay.
- Also explains tiny neutrino masses via seesaw mechanism.
- Intermediate scale monopoles and cosmic strings may survive inflation.
- $\bullet\,$  In non-SUSY inflation with Higgs potential, r  $\gtrsim 0.01$  (minimal coupling to gravity).
- SUSY and Non-SUSY models offer plausible dark matter candidates such as TeV mass higgsino, axions....
- Search for primordial gravity waves, monopoles, cosmic strings and dark matter.

# Thank You!