

Latest LHC results on the Higgs boson

Andrey Pozdnyakov

(RWTH Aachen) on behalf of CMS and ATLAS Collaborations

XXV International Symposium Particle physics, String theory and Cosmology (PASCOS-19), Manchester, UK

July 1-5, 2019

Outline

- Higgs boson discovered 7 years ago (July 4th 2012)
 - m_H = ~125 GeV
 - Precise measurements of its properties are now pursued

All seems to be consistent with SM

In this talk:

- Overview of the SM expectations
- Current experimental status
- Recent results from CMS and ATLAS
 - Decay modes, anomalous couplings, differential measurements
 - References at the end
- Future prospects

Higgs production at LHC

- > Total cross section at 13 TeV: 55 pb
- Production rates:
 - Gluon-gluon Fusion: 88%
 - Vector Boson Fusion: 7%

- Associate with vector boson: 4%
- ttH: 1%
- There are experimental advantages of VBF and VH modes: tagging events and reducing the backgrounds
 - VBF tag: two jets with m(jj) > 500 GeV and $|\eta(j_1) \eta(j_2)| > 3.5$
 - ◆ Z(ℓℓ)H: two leptons consistent with Z
 - Z(vv)H: transverse missing energy (E_T^{miss})
 - W(ℓv)H: a lepton and E_t^{miss}

Higgs boson decays

> Higgs boson "couples to the mass"

Andrey Pozdnyakov (RWTH)

ATLAS and CMS

Year	2011	2012	2016	2017	2018
√s, TeV	7	8	13	13	13
Lumi, 1/fb	5	20	40	45	65
	Run-1		Run-2		

Current status

Which decays are observed?

	Channel	BR, %	Observed ?	Data set		
	bb	58	\checkmark	★ Run 1 + 2016 + 2017	★ - covered in	
	WW	21	\checkmark	Run 1 + 2016	this talk	
	gg	9	×	-		
	ττ	6.3	6.3 ✓ Run 1 + 2016			
	ZZ	2.6	\checkmark	★ Run 1 + Run 2		
	CC	2.4	2.4 🗶 2016		While H \rightarrow gg is hopeless, here there is some hope	
	уу	0.23	\checkmark	Run 1 + 2016	Full Run-2 for differential and ttH	
	Zγ	0.15	×	Run 1, 2016	~ _{6xSM} Not yet	
	μμ	0.02	×	★ Run 1, 2016	$\sim 2 \times SM$ are close! In SM, only H $\rightarrow ZZ \rightarrow 4v$	
	Invisible	~0	×	★ Run 1, 2016		
rare ~0 🗴 Run 1, 2016		Run 1, 2016				

What's the mass again?

- Mass of the Higgs boson is a fundamental parameter of nature
 - Its measurement is improving

$H \rightarrow bb$

$H \rightarrow bb$ in VH production

- \rightarrow H \rightarrow bb is important
 - Largest decay branching fraction
 - Drives the uncertainty on the total Higgs boson width
- But difficult
 - Jets are not the cleanest objects to reconstruct
 - In ggH channel large backgrounds from QCD processes

> VH production is key

- W/Z leptonic decays are easy to identify
 - Providing trigger and offline selection
 - Eliminating QCD background
- V and H are back-to-back and boosted
 - Helps to reduce backgrounds further

B-tagger is a second key

- Secondary verteces from B-hadron decays
- Help from machine learning used

Andrey Pozdnyakov (RWTH)

iet

displaced

tracks

charged

 $BR_{SM}(H \rightarrow bb) = 58\%$

$H \rightarrow bb$ in VH production

- Main backgrounds:
 - Z+2jets, W+2jets
 - tt and single-t

- > 3 channels: with 2, 1 or 0 leptons (+2 b-tagged jets)
 - $Z(\ell\ell)H(bb)$, $W(\ell_V)H(bb)$ or Z(vv)H(bb) decays
 - Select events with $p_T(Z/W/E_T^{miss}) > 150 (170) \text{ GeV}$

• In 2-lep channel, also $\sim 50 < p_T(Z) < 150 \text{ GeV}$

- Select two jets with high b-tagging score
- Constrain the backgrounds: use control regions (by reversing some selections)
- Train BDT (DNN) discriminator: separate signal and background processes
 - Fit the data to Signal + Background predictions

DNN (BDT) output

- > 2-lepton channel, with high $p_T(Z)$
- Most significant is the most right bin

VH(bb), results

- Further combination with ttH, ggH, VBF processes are done
- Both ATLAS and CMS independently observe the $H \rightarrow bb$ decay

5

VH(bb), weighted m_{bb}

All backgrounds subtracted except di-bosons

VZ(bb) measurement

- ≻ A non-Higgs process VZ, with Z → bb is a good calibration process to measure.
- As a validation of the experimental techniques (b-tagging, DNN/BDT training) both ATLAS and CMS measure this process.

$H \rightarrow cc$?

Yes we can .. try

 $BR_{SM}(H \rightarrow cc) = 2.4\%$

- Exploiting techniques from V+H(bb) analysis we can use them for V+H(cc) search
 - Charm jet identification is less efficient than for bjets, limiting the performance
 - When compared to SM prediction: take into account that $BR(H \rightarrow bb) = 20 \times BR(H \rightarrow cc)$
 - Result of ATLAS 2016 data:
 - Limit at 110 x SM prediction
 - -2-lepton channel; m_{jj} fit
 - CMS results for H→cc search are coming out soon
 - Other ways to probe Hcc coupling?
 - Try H \rightarrow J/ ψ + γ decay
 - Theory BR = 3×10^{-6}
 - CMS limit: 260 x SM
 - ATLAS limit: 120 x SM
 - Differential measurement (see later)

Andrey Pozdnyakov (RWTH)

ttH production

Evidence for ttH

$\sigma(ttH) = 0.01 \times \sigma(tot)$

- ➢ Evidence for direct ttH process reported by ATLAS using full Run-2 data in H → γγ decay channel, with μ = 1.59^{+0.43}_{-0.39}
- CMS instead used H → bb decay in 2016+2017 data set and reports $\mu = 1.49 + 0.21 - 0.20$ (stat) + 0.39 - 0.35 (syst)

$$H \rightarrow \mu\mu$$

$H \rightarrow \mu\mu$

 $\text{BR}_{\text{SM}}(\text{H} \rightarrow \mu \mu) = 0.02\%$

- > The H $\rightarrow \mu\mu$ is not observed yet
 - Which is in agreement with SM

- ATLAS results (same data set, released in 2017):
 - Upper limit 2.8 x SM prediction

ΗH

HH production and decays at LHC

- > Sensitive to \mathbf{k}_{λ} the only way to probe the structure of the Higgs potential
- Cross section is tiny: 31 fb (~2000 smaller than single Higgs production)

Andrey Pozdnyakov (RWTH)

Summary of HH searches

CMS 35.9 fb⁻¹ (13 TeV) bbVV Observed 78.6×SM Expected 88.8×SM bbbb Observed 74.6×SM Expected 36.9×SM gg→HH bbττ Observed 31.4×SM Observed Expected 25.1×SM Median expected bbyy 68% expected Observed 23.6×SM Expected 18.8×SM 95% expected Combined Observed 22.2×SM Expected 12.8× SM 678910 20 40 50 60 70 100 200 300 400 30 95% CL on $\sigma_{HH}/\sigma_{HH}^{SM}$ 35.9 fb⁻¹ (13 TeV)

- > Sensitivity at ~10xSM
 - Impressive results compared to the expectation of ~10 years ago!
- Constraining the couplings:
 - -10 < k_{λ} < 15

$H \rightarrow invisible$

$H \rightarrow invisible$

- > There must be dark matter
 - What if H decays to it?
 - It's invisible
 - Search for events with large $E_{\!\!\tau}^{miss}$
- > ATLAS result (Run 1 + 2017):
 - BR(H→inv) < 26%
- CMS result (Run 1 + 2017):
 - BR(H→inv) < 19%

July 1, 2019

Andrey Pozdnyakov (RWTH)

$H \rightarrow ZZ \rightarrow 4\ell$

Parameterize $H \rightarrow ZZ \rightarrow 4\ell$

> Scattering amplitude for $H \rightarrow VV$

$$A \sim \left[a_1^{\text{VV}} - \frac{\kappa_1^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}} q_2^2}{\left(\Lambda_1^{\text{VV}}\right)^2} - \frac{\kappa_3^{\text{VV}} (q_1 + q_2)^2}{\left(\Lambda_Q^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V2}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2) \mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2) \mu\nu}$$

$$gg \rightarrow H \rightarrow VV \rightarrow 4\ell$$

 $\mathbf{\Omega}^{decay} = \{\theta_1, \theta_2, \Phi, m_1, m_2, m_{4f}\}$

$$\mathcal{D}_{\mathrm{alt}}\left(\mathbf{\Omega}
ight) = rac{\mathcal{P}_{\mathrm{sig}}\left(\mathbf{\Omega}
ight)}{\mathcal{P}_{\mathrm{sig}}\left(\mathbf{\Omega}
ight) + \mathcal{P}_{\mathrm{alt}}\left(\mathbf{\Omega}
ight)}$$

$$\mathcal{D}_{\mathrm{int}}\left(\mathbf{\Omega}
ight) = rac{\mathcal{P}_{\mathrm{int}}\left(\mathbf{\Omega}
ight)}{2\sqrt{\mathcal{P}_{\mathrm{sig}}\left(\mathbf{\Omega}
ight) \ \mathcal{P}_{\mathrm{alt}}\left(\mathbf{\Omega}
ight)}},$$

Look at the data

- Yarious discriminators can be build to constrain non-SM couplings
- Run global ML fit to the data for all Ds and get the results
 - All anomalies are constrained to zeroes

Go differential

Cross section in $p_T(H)$ and y

> Measurements of $p_T(H)$ and y(H) from H → ZZ and H → $\gamma\gamma$ processes

Constrain k_c?

- Differential distributions are sensitive to H couplings
 - Can we constrain k_c from this, for example?
 - Yes, and it could be comparable with direct search

- Other couplings are constrained as well
 - + λ_{hhh} is another good example
- Powerful method, but relies on prior theoretical assumptions

Future prospects

With current LHC

- In many channels, still 2017 and 2018 data are to be analyzed
 - More precise m_H measurements in $H \rightarrow 4\ell$
 - Better constraints on Hbb, Hcc, HH
- More data are coming in Run 3 (150 /fb expected)
 - Will we observe $H \rightarrow \mu\mu$, $H \rightarrow Z\gamma$?

- > Then: HL-LHC
 - See the amazing LHC Yellow Report

Summary

- The status and recent results on Higgs boson was presented
 - H \rightarrow bb observed at 5 sigma by both CMS and ATLAS
 - Higgs decays to all dominant channels are observed
 - Higgs production via ttH channel is confirmed
 - Limit on HH production is at ~10xSM
 - No statistically significant anomalies are observed so far
 - Standard Model is solid
- More results are coming stay tuned!

References

H decay channel	ATLAS	CMS	
All channels, all Higgs public results:	Click	Click	
bb	Phys. Lett. B 786 (2018) 59	Phys. Rev. Lett. 121 (2018) 121801 CMS-HIG-18-030	
ττ	Phys. Rev. D 99 (2019) 072001	JHEP 1906 (2019) 093 CMS-HIG-18-032	
$ZZ \rightarrow 4I$	Phys. Lett. B 786 (2018) 223 ATLAS-CONF-2018-018	Phys. Rev. D 99 (2019) 112003	
CC	Phys. Rev. Lett. 120 (2018) 211802	CMS-HIG-18-031 (not public yet)	
уу	Phys. Lett. B 784 (2018) 345, Phys. Rev. D 98 (2018) 052005 ATLAS-CONF-2018-028 ATLAS-CONF-2019-004	Phys. Lett. B 792 (2019) 369	
μμ	Phys. Rev. Lett. 119 (2017) 051802	Phys. Rev. Lett. 122 (2019) 021801	
HH arXiv:1906.02025 ATL-PHYS-PUB-2019-009		Phys. Rev. Lett. 122 (2019) 121803	
Invisible	Phys. Rev. Lett. 122, 231801	Phys. Lett. B 793 (2019) 520	
rare	Phys. Lett. B 786 (2018) 134	Eur.Phys.J. C79 (2019) 94	

The End

Backup

$H \rightarrow \tau \tau$

Status of H $\rightarrow \tau \tau$

 $BR_{SM}(H \rightarrow \tau \tau) = 6.3\%$

- $^{\succ}$ Observation of H $\rightarrow \tau\tau$ has been reported in a combined result CMS and ATLAS in Run-1
- Recent updates:
 - ATLAS and CMS released results using 2016 data set: the decay is also observed by a single experiment
 - CMS released a dedicated VH analysis, and combined that with previous ggH+VBF

Andrey Pozdnyakov (RWTH)