Axion Dark Matter Searches

XXV International Symposium PASCOS 2019 Particle physics, String theory and Cosmology 1–5 July 2019, Manchester, UK

Center for Axion and Precision Physics Research

3 July 2019 Byeong Rok Ko (IBS/CAPP)

Contents

Axion

Axion Dark Matter

Axion Dark Matter Searches

Axion

How did axion come to show up?

• $U(1)_A$ problem in 3-flavor (u, d, s) QCD

•Solution of the $U(1)_A$ problem

 $\circ U(1)_A$ is not a symmetry with the Adler-Bell-Jackiw anomaly

$$\mathcal{L}_{QCD} = \mathcal{L}_{quarks} + \mathcal{L}_{gluon} + \theta_{QCD} \frac{g^2}{32\pi^2} F_a^{\mu\nu} \tilde{F}_{\mu\nu a}$$

, θ_{QCD} is a parameter of QCD

 \circ 't Hooft derived the nominal η' mass

Axion

How did axion come to show up?

•Solution of the $U(1)_A$ problem results in

the strong CP problem in the standard model (SM)

$$\circ \mathcal{L}_{QCD} \text{ with } \theta_{QCD} \frac{g^2}{32\pi^2} F_a^{\mu\nu} \tilde{F}_{\mu\nu a} \text{ is } CP \text{ odd } (\because F_a^{\mu\nu} \tilde{F}_{\mu\nu a} \sim \vec{E}^a \cdot \vec{B}^a)$$

$$\circ CPV \text{ could be tested by the neutron electric dipole moment (ED)}$$

$$d_n \sim \theta_{SM} \frac{m_u m_d}{m_u + m_d}$$
, where $\theta_{SM} = \theta_{QCD} + \theta_{EW}$ with non-zero m_u and m_d

(turn on $EW \to SM$) and expected to be ~ $10^{-16} \theta_{SM} e \cdot cm$ • experiments result in $\theta_{SM} \le 10^{-10} \rightarrow$ very unnatural

According to "naturalness" in theoretical physics; it would take a value of order 1. $\theta_{SM} \sim 0$ if *CP* is a symmetry in the SM. However, we know the SM violates *CP* \rightarrow Strong *CP* problem in the SM

Axion How did axion come to show up? •Axion as a solution of the strong *CP* problem in the SM

- \circ promotes the θ_{SM} from a parameter to a dynamic variable
 - by Peccei and Quinn (PQ), introducing $U(1)_{PQ}$ with the anomaly

$$\frac{g^2}{32\pi^2}\theta_{SM}F_a^{\mu\nu}\tilde{F}_{\mu\nu a} \rightarrow \frac{g^2}{32\pi^2}\left(\theta_{SM} + \frac{a}{f_a}\right)F_a^{\mu\nu}\tilde{F}_{\mu\nu a} \text{ and }$$

the axion field *a* relaxes to the minumim $\langle a \rangle = -\theta_{SM} f_a$,

 f_a is the axion decay constant,

PQ symmetry breaking scale, but unknown

$$\circ a = \langle a \rangle + a_{phy} \rightarrow \frac{g^2}{32\pi^2} \frac{a_{phy}}{f_a} F_a^{\mu\nu} \tilde{F}_{\mu\nu a} \text{ which is } CP \text{ even}$$

with pseudoscalar axion field

Axion Axion models

	$f_a(U(1)_{PQ} \text{ breaking scale})$	tree level couplings	
PQWW; Peccei– Quinn– Weinberg– Wilczek	$f_a \sim v_{EW}$ $\mathbf{\tau}_a \sim 10^{-2} s$ for $m_a \sim 100$ keV	SM	Ruled out by accelerator experiments
DFSZ; Dine– Fischler– Srednicki– Zhitnitsky	$f_a >> v_{EW}$ $\mathbf{\tau}_a$ is longer than the	particles	Have served as
KSVZ; Kim- Shifman- Vainshtein- Zakharov	age of our Universe, m _a ~O(µeV) for f _a ~10 ¹² GeV	New very heavy quarks beyond the SM	useful benchmarks for experiments

$\begin{array}{l} \textbf{Axion} \\ \textbf{Axion photon coupling (} g_{a\gamma\gamma} \textbf{)} \end{array}$

•important coupling for axion detection

(neutral heavy quark)

Axion Astrophysical boundary

SN 1987A

Observation associated with neutrino events is consistent with the expectations assuming that the collapsed supernova core cools solely by neutrino emission

If the core also cools by axion emission, the neutrino burst is excessively foreshortened

• Axion Cosmological production & boundary

•the axion energy denisity Ω_a from the misalignment

$$\Omega_a h^2 \approx 0.12 \left(\frac{6 \ \mu eV}{m_a}\right)^{1.165} \theta_{SM}^2$$
 (PDG 2018)

and the observed CDM density $\Omega_{\rm CDM}h^2 = 0.12$ (PDG 2018)

→ give us m_a should be above 6 μ eV in order that Ω_a doesn't exceed the observed Ω_{CDM} with the natural $\theta_{SM} \sim 1$

•produced with PQ symmetry breaking
•axion misaligned w.r.t. the minimum, *θ*_{SM} → called misalignment production
•potential tilted by QCD
•axion rolls down and starts coherent oscillation around *θ*_{SM} = 0 → the oscillation energy constitutes

a sizeable fraction of the energy density of our Universe

Axion Dark Matter Axion Cold Dark Matter

- •dark matter candidates
- 1) must have nonzero mass (energy budget : ~27% of the Universe)
- 2) stable on cosmological timescales
- 3) cold according to the standard model of Big Bang cosmology

•axion

- 1) μ eV (cosmological) < m_a < meV (astrophysical)
- 2) τ_a is longer than the age of our Universe for even with $m_a \sim O(\text{meV})$
- 3) coherent oscillation \rightarrow non-thermal \rightarrow born as cold

Axion is a good candidate for cold dark matter in our Universe

Axion Dark Matter Energy and lineshape

•cold \Leftrightarrow non-relativistic

axion energy
$$E_a = m_a c^2 + \frac{1}{2} m_a v^2 = m_a c^2 \left(1 + \frac{1}{2} \left(\frac{v}{c} \right)^2 \right)$$
, where $\left(\frac{v}{c} \right)^2 \sim O(10^{-6})$

•with simple halo model, v distribution follows the Maxwell-Boltzmann

•very narrow peak, negligible dispersion $O(10^{-6})$ relative to the axion mass •axion energy shows up as a very narrow peak, easy to isolate the signal from backgrounds \rightarrow very similar to search for new particle signals by looking at invariant mass spectrum

•interaction energy $U_{a\gamma\gamma}$ (or axion energy inherited to the photon), then detected as axion signal power $P_a = \omega_a U_{a\gamma\gamma}$

Axion Dark Matter Searches 13 Axion haloscope searches •invented by P. Sikivie, $\mathcal{L}_{a\gamma\gamma} \sim g_{a\gamma\gamma} a \vec{E} \cdot \vec{B}$ $\vec{E}_{a, \text{ cavity mode}}(\omega_a)$, where $\omega_a = \omega_{\text{cavity mode}}$ cavity has to be tunable! KΒ. $\vec{B}_{static} \sim B_0 \hat{z}$ •resonated axion signal power $P_a = Q \omega_a U_{a\gamma\gamma} \propto g_{a\gamma\gamma}^2 B_0^2 V Q \frac{\left(\int_V \vec{E}_{a, \text{ cavity mode}} \cdot \vec{B}_{static} dV\right)^2}{B_0^2 V \int_V \vec{E}_{a, \text{ cavity mode}}^2 dV},$ (easy to realize a cavity whose Q > 10,000) Q: Q of the cavity mode, V: cavity volume, $C = \frac{\left(\int_{V} \vec{E}_{a, \text{ cavity mode}} \cdot \vec{B}_{static} dV\right)^{2}}{B_{0}^{2} V \int \vec{E}_{a, \text{ cavity mode}}^{2} dV}:$ form factor of the cavity mode

14

Figure of merit

- •Practical search range; $0.4 \sim 10 \text{ GHz}$ (a few $\mu \text{eV} \sim 40 \mu \text{eV}$)
- \rightarrow only thermal noise background contribution (cavity + amplifier)

•Signal to Noise Ratio (SNR) =
$$\frac{P_a}{k_B T_N} \sqrt{\frac{t_{\text{integration}}}{\Delta f_a}}$$
, Dicke radiometer eq.,

 $T_N = T_{cavity} + T_{amplifier_noise}$: system noise temperature, Δf_a : axion signal bandwidth

•Resonant mode search, have to scan the resonant frequencies, Practical figure of merit in axion haloscope searches,

Scanning rate
$$\frac{df}{dt} \propto \frac{B_0^4 V^2 C^2 Q}{T_N^2}$$

Axion Dark Matter Searches Axion haloscope searches **Key experimental devices** Artist View of CMS Solenoid 12.5 x 6.3 m 4 T 2.7 GJ SQUID A2-5, f = 684 MHz SQUID K4-2, f = 702 MHz Noise temperature (mK) 1000 $-\frac{dj}{dt}$ 100 $T_{O} \approx 33 \text{ mK}$ Dilution fridge 1000 100 insert. Physical temperature (mK) $T_{N} = T_{cavity} + T_{amplifier_noise}$ Leiden PRL 104, 041301 (2010) DRS-1000

17

Overview of an axion haloscope

receiver @300 K

fridge

18

Axion Dark Matter Searches ¹⁹ Axion haloscope searches

Signal (simulation) and background spectrum (real)

SNR ~ 40 for a certain signal power, but with much longer t_{integration}

Axion Dark Matter Searches Ongoing axion haloscope searches ADMX (Axion Dark Matter eXperiment)

- ~ 3.5 m tall
- • $B_0 = 8$ T and

the magnet bore ~ 600 mm, V = 136 L

20

- •*C* ~ 0.4 and *Q* ~ 50,000
- • $T_N \sim 500 \text{ mK}$
- $= 190 \text{ mK} (T_{cavity})$

+ 310 mK ($T_{amplifier_noise}$)

Axion Dark Matter Searches Ongoing axion haloscope searches ADMX (Axion Dark Matter eXperiment)

21

Axion Dark Matter Searches Ongoing axion haloscope searches ADMX Sidecar

(PRL 121, 261302 (2018))

- • $B_0 = 3.11 \text{ T}$ at most, $V \sim 0.38 \text{ L}$
- *T_N* ~ 7 K with transitor based amplifier
 But, TM₀₁₀ and TM₀₂₀ at the same time for the first time

22

•*C* (0.4 ~ 0.04) and *Q* (6,000 ~ 2,000) depend on the cavity modes

ADMX Sidecar

Be careful, this is a log-log plot!

23

Axion Dark Matter Searches Ongoing axion haloscope searches HAYSTAC

(Haloscope At Yale Sensitive To Axion CDM)

• $B_0 = 9$ T and

the magnet bore ~ 140 mm,

higher frequency dedicated, V = 2 L

24

- •*C* ~ 0.5 and *Q* ~ 10,000
- • $T_N \sim 3$ quanta ~2.2 quanta (828 mK ~ 607 mK for 5.75 GH
 - (828 mK ~ 607 mK for 5.75 GHz)
- first successful operation of an axion detector incorporating a dilution fridge and quantum-noise-limited amplifier

Axion Dark Matter Searches Ongoing axion haloscope searches HAYSTAC

25

(Haloscope At Yale Sensitive To Axion CDM)

Axion Dark Matter Searches²⁶ Ongoing axion haloscope searches CULTASK (CAPP Ultra Low Temperature Axion Search in Korea)

- •CAPP is established in October 2013
- •mainly building infrastructure so far and time to do physics
- •parallel searches with different magnets (= in different frequency ranges)
- \rightarrow the best way to increase the scanning rate which is the practical FoM

B ₀	bore	system cooling	target	a.k.a.
8 T	125 mm		sensitive to QCD axion	CAPP-PACE
8 T	165 mm	dilution		CAPP-8TB
12 T	320 mm		sensitive to DFSZ axion	CAPP-12TB
9 T	125 mm	pumped LHe	testbed	CAPP-MC

Axion Dark Matter Searches Ongoing axion haloscope searches CULTASK

27

(CAPP Ultra Low Temperature Axion Search in Korea)

Summary

Axion solves the strong CP problem in the SM Axion Dark Matter strong CDM candidate Axion Dark Matter Searches two rabbits at the same time

Thank you very much

Open resonator

Friis's formula

$$T_{\text{sys}} = T_{\text{phys}} + T_1 + \frac{T_2}{G_1} + \frac{T_3}{G_1 G_2} + \cdots,$$

Dark Matter Candidates

	Axions	WIMPs	
Year invented	1977	1985	
Original purpose	Solve technical problem in theory of strong nuc l ear force	Explain dark matter	
Detectable because they	Turn into photons in strong magnetic fie l ds	Bounce off atomic nuclei	
Pros	Solve more than one problem; allow for decisive test	Flow naturally from supersymmetry; provide many models and multiple avenues of detection	
Cons	Provide few models and one means of detection	Resist decisive testing; haven't shown up in decades of l ooking	

Science, Vol 342, 1 Nov. 2013