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   predicts all the relevant particles in the limit, 

     ~ ~ ~ 0,  except for  whose mass 958 MeV is too heavy
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  (1)  is not a symmetry with the Adler-Bell-Jackiw anomaly
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  promotes the  from a parameter to a dynamic variable 
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     the axion field  relaxes to the minumim ,
     axion decay constant, 
    PQ symmetry breaking scale, but
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fa (U(1)PQ breaking scale)  tree level couplings  

PQWW;  
Peccei- 
Quinn-                                      
Weinberg-    
Wilczek 

 
fa~vEW 

 
τa~10-2 s for ma~100 keV 

 

 
 
 
 

SM  
particles 

 
 
 

 
Ruled out by 
accelerator 

experiments 

DFSZ; 
Dine- 
Fischler- 
Srednicki- 
Zhitnitsky 

 
 

fa>>vEW 
 

τa is longer than the 
age of our Universe, 

 ma~O(μeV)  
for fa~1012 GeV 

 
 
 

 
 
 
 

Have served as 
useful benchmarks 

for experiments 
KSVZ; 
Kim- 
Shifman- 
Vainshtein- 
Zakharov 

 
New very heavy 
quarks beyond  

the SM  
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important coupling for axion detection

a ag aE Bγγ γγ

•

• ⋅
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0πa
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both KSVZ and DFSZ axions

not for the standard KSVZ a
(neutral heavy qu

xion
ark)

QCD axion 
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SN 1987A 

Observation associated 
with neutrino events is 
consistent with the 
expectations assuming 
that the collapsed 
supernova core cools 
solely by neutrino emission 

If the core also cools by axion 
emission, the neutrino burst 
is excessively foreshortened 

(meV)am O<
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Figure: G. Raffelt 

Figure: D. S. Gorbunov produced with PQ symmetry breaking
axion misaligned w.r.t. the minimum, 

 cal misalignment productionled SMθ

•
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→

potential tilted by QCD
axion rolls down and starts coherent oscillation 

  around 0 the oscillation energy constitutes 
  a sizeable fraction of the energy density of our Universe

SMθ

•
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= →

1.165
2 2

2
CDM

the axion energy denisity  from the misalignment

6 eV  0.12  (PDG 2018)

  and the observed CDM density 
  0.12 (PDG 2018)

give us  should be above 6 eV 
 in order that 
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abundance 

SN 1987A 

QCD axion with 
cosmological and 
astrophysical
boundaries
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dark matter candidates
1) must have nonzero mass (energy budget : ~27% of the Universe)
2) stable on cosmological timescales
3) cold according to the standard model of Big Bang cosmology

•

axion
1) eV (cosmological)   meV (astrophysical)
2)  is longer than the age of our Universe for even with ~ (meV)  
3) coherent oscillation non-thermal born as cold
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m
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Axion is a good candidate  
for cold dark matter in our Universe 



11 11 

2 2
2 2 2 6

cold  non-relativistic

1 1 axion energy 1 ,  where ~ (10 )
2 2

with simple halo model,  distribution follows the Maxwell-Boltzmann

a a a a
v vE m c m v m c O
c c
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2for axion of 1.6 GHz ( )a am c hf= 6

very narrow peak, 
  negligible dispersion (10 )
  relative to the axion mass 
axion energy shows up as 

  a very narrow peak, 
  easy to isolate the signal 
  from backgrounds very similar 
  to search

O −

•

•

→
 for new particle signals 

  by looking at invariant mass spectrum
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invented by P. Sikivie, a ag aE Bγγ γγ• ⋅
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invented by P. Sikivie, a ag aE Bγγ γγ• ⋅
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resonated axion signal power ,
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0 , cavity mode

 :  of the cavity mode, : cavity volume, : form factor of the cavity mode
a staticV

aV

E B dV
Q Q V C

B V E dV

⋅
≡
∫

∫

 



cavity has to be 
tunable!
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0 ˆ~staticB B z
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,cavity mode2 2
0 2 2

0 , cavity mode

axion signal power at haloscope searches 
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~ 0.69
best mode
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cancelation, 
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TME
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resonant frequencies
1 2.405 1 5.520  and 

 is constrained by the magnet bore 

TM TM
cavity cavity

cavity
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ω ω
µε µε
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Magnets practically define 
axion haloscope searches! 

, cavity mode cavity mode( ),  where a a aE ω ω ω=
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axion frequency of 0.2 GHz; 
magnet bore ~ 1,150 mm 

axion frequency of 100 GHz; 
tunable cavity diameter ~ 0.23 mm  

Practical search range;  
0.4 ~ 10 GHz (a few μeV ~ 40 μeV) 
magnet bore ~ 575 mm 
cavity diameter ~ 23 mm 

solenoid 
at collider 
detector  
can do it,  
but… 
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Figure of merit 

integration

Practical search range; 0.4 ~ 10 GHz (a few eV ~ 40 eV)
only thermal noise background contribution (cavity + amplifier)

Signal to Noise Ratio (SNR) = , Dicke radiome , ter e
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µ µ•
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= _ : system noise temperature, : axion signal bandwidthvity amplifier noise aT f+ ∆

4 2 2
0

2

Resonant mode search, have to scan the resonant frequencies,
  Practical figure of merit in axion haloscope searches, 

  Scanning rate 
N

B V C Qdf
dt T
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∝
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Key experimental devices 

4 2 2
0

2
N

B V C Qdf
dt T

• ∝

_  N cavity amplifier noiseT T T= +

Dilution 
fridge  
insert, 
Leiden 
DRS-1000 



18 18 

Overview of an axion haloscope 

fridge receiver @300 K 
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Signal (simulation) and background spectrum (real) 

SNR ~ 4 for a certain signal power SNR ~ 40 for a certain signal power, 
but with much longer tintegration 
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ADMX (Axion Dark Matter eXperiment) 

0

_

~ 3.5 m tall
8 T and 

 the magnet bore ~ 600 mm, 136 L
~ 0.4 and ~ 50,000
~ 500 mK 

= 190 mK ( ) 

+ 310 mK ( )
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Figure: G. Rybka@UW 
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ADMX (Axion Dark Matter eXperiment) 

PRL , 151301 (2018)
first DFS
light gree

Z axion s
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PRL , 2043 (1998),
       APJ Lett 572, 27 (2002),
       PRD 69, 011101 (2004),
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No dilution fridge, instead

pumped LHe temperature, 2 K
~ 3 K (PRL 2010) or 

             4 K (others)
sensitive to the standard

 KSVZ axion
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ADMX Sidecar 

010 020

0 3.11 T at most, ~ 0.38 L
~ 7 K with transitor based ampli

But, TM  and TM  at the same time
 for the first 
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 (0.4 ~ 0.04) and  (6,000 ~ 2,000) 
  depend on the cavity modes
C Q•

(PRL  121, 261302 (2018)) 
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ADMX Sidecar 
(PRL  121, 261302 (2018)) 

010 0TM  mode with 3.11 TB• =

010 0TM  mode, but  0.78 TB• =

020 0TM  mode with 3.11 TB• =

Be careful, this is a log-log plot! 

Not sensitive to the QCD axion,  
but ongoing cavity experiment 
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HAYSTAC  
(Haloscope At Yale Sensitive To Axion CDM) 

Figure : NIMA 854 (2017) 11-24 

0 9 T and 
 the magnet bore ~ 140 mm, 
 higher frequency dedicated, 2 L

~ 0.5 and ~ 10,000
~ 3 quanta ~2.2 quanta 

 (828 mK ~ 607 mK for 5.75 GHz)
first successful operation of 

  an axion detector i

N

B

V
C Q
T

• =

=
•
•

•
ncorporating

  a dilution fridge and 
  quantum-noise-limited amplifier
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HAYSTAC  
(Haloscope At Yale Sensitive To Axion CDM) 

PRL , 061302 (2017),
  PRD , 092001 (2018)
• 118

97

log-log plot!
HAYSTAC 

  scanned over 
  200 MHz,
  sensitive to 
  the QCD axion 

•
•
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CULTASK  
(CAPP Ultra Low Temperature Axion Search in Korea) 

CAPP is established in October 2013
mainly building infrastructure so far and time to do physics
parallel searches with different magnets ( in different frequency ranges)

the best way to increase the

•
•
• =
→  scanning rate which is the practical FoM

B0  bore system cooling target a.k.a. 
8 T 125 mm  

dilution 
sensitive to  
QCD axion 

CAPP-PACE 
8 T 165 mm CAPP-8TB 
12 T 320 mm sensitive to DFSZ axion CAPP-12TB 
9 T 125 mm pumped LHe testbed CAPP-MC 
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CULTASK  
(CAPP Ultra Low Temperature Axion Search in Korea) 

CAPP-12TB : DFSZ axion 
  sensitive, but axion could be 
  at that level, decided to go with 
  the standard KSVZ axion scan

•

top view of  
the 4-cell cavity 



Axion 
solves the strong CP problem in 
the SM 
Axion Dark Matter 
strong CDM candidate 
Axion Dark Matter Searches 
two rabbits at the same time 
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Thank you very much 
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Open resonator   
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