Unusual WIMP Dark Matter

Manuel Drees

Bonn University & Bethe Center for Theoretical Physics

(1) Thermal WIMPs

(1) Thermal WIMPs

(2) Direct Detection of WIMPs

(1) Thermal WIMPs

(2) Direct Detection of WIMPs

(3) Evading the Bounds

(a) Very Heavy WIMP

- (b) Spin-1 Mediator Coupling to Heavy Quarks
- (c) Spin $-1 L_{\mu} L_{\tau}$ Mediator

(1) Thermal WIMPs

(2) Direct Detection of WIMPs

(3) Evading the Bounds (a) Very Heavy WIMP (b) Spin-1 Mediator Coupling to Heavy Quarks (c) Spin-1 L_μ - L_τ Mediator

(4) WIMP NREFT?

(1) Thermal WIMPs

(2) Direct Detection of WIMPs

(3) Evading the Bounds (a) Very Heavy WIMP (b) Spin-1 Mediator Coupling to Heavy Quarks (c) Spin-1 L_μ - L_τ Mediator

(4) WIMP NREFT?

(5) Summary

Weakly Interacting Massive Particles (WIMPs)

 χ : generic DM particle, n_{χ} its number density. Assume $\chi = \bar{\chi}$, i.e. $\chi\chi \leftrightarrow$ SM particles is possible, but single production of χ is forbidden by some symmetry.

Weakly Interacting Massive Particles (WIMPs)

 χ : generic DM particle, n_{χ} its number density. Assume $\chi = \overline{\chi}$, i.e. $\chi\chi \leftrightarrow$ SM particles is possible, but single production of χ is forbidden by some symmetry.

Evolution of n_{χ} determined by Boltzmann equation:

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\rm ann} v \rangle \left(n_{\chi}^2 - n_{\chi, \rm eq}^2 \right)$$

H Hubble parameter; $\langle \dots \rangle$: Thermal averaging $\sigma_{\text{ann}} = \sigma(\chi \chi \to \text{SM})$ *v* : relative velocity between χ 's in their cms $n_{\chi, \text{eq}} : \chi$ density in full equilibrium

Weakly Interacting Massive Particles (WIMPs)

 χ : generic DM particle, n_{χ} its number density. Assume $\chi = \bar{\chi}$, i.e. $\chi\chi \leftrightarrow$ SM particles is possible, but single production of χ is forbidden by some symmetry.

Evolution of n_{χ} determined by Boltzmann equation:

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\rm ann} v \rangle \left(n_{\chi}^2 - n_{\chi, \rm eq}^2 \right)$$

H Hubble parameter; $\langle ... \rangle$: Thermal averaging $\sigma_{ann} = \sigma(\chi \chi \to SM)$ *v* : relative velocity between χ 's in their cms $n_{\chi, eq} : \chi$ density in full equilibrium

Gives

$$\Omega_{\chi} h^2 \propto \frac{1}{\langle v \sigma_{\rm ann} \rangle} \sim 0.1 \text{ for } \sigma_{\rm ann} \sim \mathsf{pb}$$

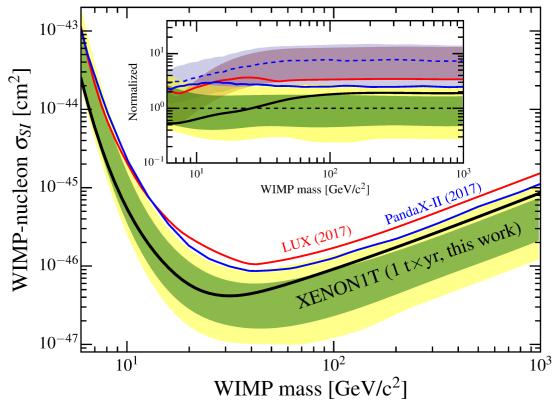
Estimating the required coupling

<u>Case 1:</u> $m_{\chi} > \text{mediator mass } M_M$ $\sigma_{\text{ann}} \sim \frac{\alpha^2}{m_{\chi}}^2 \quad \alpha : \text{some couplings (} \neq \alpha_{\text{em}}, \text{ usually)}$ $\sigma_{\text{ann}} \sim 1 \text{ pb} \simeq 2.5 \cdot 10^{-9} \text{ GeV}^{-2} \Longrightarrow \alpha \sim 5 \cdot 10^{-3} \frac{m_{\chi}}{100 \text{ GeV}}$

Estimating the required coupling

 $\begin{array}{l} \underline{\text{Case 1:}} \ m_{\chi} > \text{mediator mass } M_{M} \\ \sigma_{\text{ann}} \sim \frac{\alpha^{2}}{m_{\chi}}^{2} \quad \alpha : \text{some couplings (} \neq \alpha_{\text{em}}, \text{ usually)} \\ \sigma_{\text{ann}} \sim 1 \ \text{pb} \simeq 2.5 \cdot 10^{-9} \ \text{GeV}^{-2} \Longrightarrow \alpha \sim 5 \cdot 10^{-3} \frac{m_{\chi}}{100 \ \text{GeV}} \end{array}$

<u>Case 2</u>: $0.5m_{\chi}$ < mediator mass M_M $\sigma_{\rm ann} \sim \frac{\alpha^2 m_{\chi}}{2M_m^4}$ $\sigma_{\rm ann} \sim 2.5 \cdot 10^{-9} \,\,{\rm GeV}^{-2} \Longrightarrow \alpha \sim 5 \cdot 10^{-3} \frac{M_m}{100 \,\,{\rm GeV}} \frac{M_m}{m_{\chi}}$


Direct WIMP detection

Look for elastic scattering of ambient WIMPs off nuclei; signal: nuclear recoil. No (reproducable) signal has been found.

Direct WIMP detection

Look for elastic scattering of ambient WIMPs off nuclei; signal: nuclear recoil. No (reproducable) signal has been found.

Current best bound: XENON1T collab., arXiv:1805.12562

Direct WIMP Searches (cont'd)

If scattering proceeds via mediator with same coupling α :

$$\sigma(\chi N \to \chi N) \sim \frac{\alpha^2 \mu^2}{M_m^4} \qquad \mu = \frac{m_\chi m_N}{m_\chi + m_N} \simeq m_\chi$$

Direct WIMP Searches (cont'd)

If scattering proceeds via mediator with same coupling α :

$$\sigma(\chi N \to \chi N) \sim \frac{\alpha^2 \mu^2}{M_m^4} \qquad \mu = \frac{m_\chi m_N}{m_\chi + m_N} \simeq m_\chi$$
1:

Case

$$\sigma_{\chi N} \sim 2.5 \cdot 10^{-9} \frac{m_{\chi}^2}{M_m^4} \ge \frac{2.5 \cdot 10^{-9}}{m_{\chi}^2} \simeq 10^{-4} \text{ pb} \left(\frac{100 \text{ GeV}}{m_{\chi}}\right)^2$$

Direct WIMP Searches (cont'd)

If scattering proceeds via mediator with same coupling α :

$$\sigma(\chi N \to \chi N) \sim \frac{\alpha^2 \mu^2}{M_m^4} \qquad \mu = \frac{m_\chi m_N}{m_\chi + m_N} \simeq m_\chi$$
1:

$$\sigma_{\chi N} \sim 2.5 \cdot 10^{-9} \frac{m_{\chi}^2}{M_m^4} \ge \frac{2.5 \cdot 10^{-9}}{m_{\chi}^2} \simeq 10^{-4} \text{ pb} \left(\frac{100 \text{ GeV}}{m_{\chi}}\right)^2$$

Case 2:

Case

$$\sigma_{\chi N} \sim 10^{-4} \text{ pb} \left(\frac{100 \text{ GeV}}{m_{\chi}}\right)^2$$

For $m_{\chi} \gtrsim 50$ GeV:

$$\sigma_{\chi N} \leq \frac{m_{\chi}}{100 \text{ GeV}} \cdot \begin{cases} 10^{-10} \text{ pb}, & \text{spin indep.} \\ 10^{-5} \text{ pb}, & \text{spin dep.} \end{cases}$$

For $m_{\chi} \gtrsim 50$ GeV:

$$\sigma_{\chi N} \leq \frac{m_{\chi}}{100 \text{ GeV}} \cdot \begin{cases} 10^{-10} \text{ pb}, & \text{spin indep.} \\ 10^{-5} \text{ pb}, & \text{spin dep.} \end{cases}$$

Ways around this:

(*i*) Make χ light! Current searches lose sensitivity if $m_{\chi} \leq$ (few) GeV. Not today!

For $m_{\chi} \gtrsim 50$ GeV:

$$\sigma_{\chi N} \leq \frac{m_{\chi}}{100 \text{ GeV}} \cdot \begin{cases} 10^{-10} \text{ pb}, & \text{spin indep.} \\ 10^{-5} \text{ pb}, & \text{spin dep.} \end{cases}$$

Ways around this:

(*i*) Make χ light! Current searches lose sensitivity if $m_{\chi} \leq$ (few) GeV. Not today!

(*ii*) Make χ heavy! $m_{\chi} \gtrsim \begin{cases} 200 \text{ GeV} & \text{spin dep. : no problem} \\ 10 \text{ TeV} & \text{spin indep. : ??} \end{cases}$

For $m_{\chi} \gtrsim 50$ GeV:

$$\sigma_{\chi N} \leq \frac{m_{\chi}}{100 \text{ GeV}} \cdot \begin{cases} 10^{-10} \text{ pb}, & \text{spin indep.} \\ 10^{-5} \text{ pb}, & \text{spin dep.} \end{cases}$$

Ways around this:

(*i*) Make χ light! Current searches lose sensitivity if $m_{\chi} \leq$ (few) GeV. Not today!

(*ii*) Make χ heavy! $m_{\chi} \gtrsim \begin{cases} 200 \text{ GeV} & \text{spin dep. : no problem} \\ 10 \text{ TeV} & \text{spin indep. : ??} \end{cases}$

(iii) Decouple mediator from light quarks!

A Very Heavy Thermal WIMP

MD, F. Gomes Ferreira, JHEP 1904 (2019) 167

Enhance annihilation cross section through resonance: $m_{\chi} \simeq M_m/2!$ For complex scalar WIMP: need scalar mediator. For Majorana fermion WIMP: need pseudoscalar mediator.

A Very Heavy Thermal WIMP

MD, F. Gomes Ferreira, JHEP 1904 (2019) 167

Enhance annihilation cross section through resonance: $m_{\chi} \simeq M_m/2!$ For complex scalar WIMP: need scalar mediator. For Majorana fermion WIMP: need pseudoscalar mediator.

Mediator should have similar couplings to initial and final state

A Very Heavy Thermal WIMP

MD, F. Gomes Ferreira, JHEP 1904 (2019) 167

Enhance annihilation cross section through resonance: $m_{\chi} \simeq M_m/2!$ For complex scalar WIMP: need scalar mediator. For Majorana fermion WIMP: need pseudoscalar mediator.

Mediator should have similar couplings to initial and final state

Can be realized in [E(6) motivated] U(1)' extended MSSM!

(Reasonably) well motivated model: MSSM $+\nu_R$ Superfield (SM singlet) +E(6) inspired U(1), broken by SM singlet N

(Reasonably) well motivated model: MSSM $+\nu_R$ Superfield (SM singlet) +E(6) inspired U(1), broken by SM singlet N

LHC: $m_{Z'} \gtrsim 4 \text{ TeV} \gg m_Z, m_h$

 \implies one physical Higgs $\simeq N$, with $m_N \simeq m_{Z'}$!

(Reasonably) well motivated model: MSSM $+\nu_R$ Superfield (SM singlet) +E(6) inspired U(1), broken by SM singlet N

LHC: $m_{Z'} \gtrsim 4 \text{ TeV} \gg m_Z$, m_h \implies one physical Higgs $\simeq N$, with $m_N \simeq m_{Z'}!$ $\tilde{\nu}_R \tilde{\nu}_R N$ coupling $\propto g' m_{Z'}$ (*D*-term): allows *S*-wave pole for $m_{\tilde{\nu}_R} \simeq m_N/2 \simeq m_{Z'}/2!$

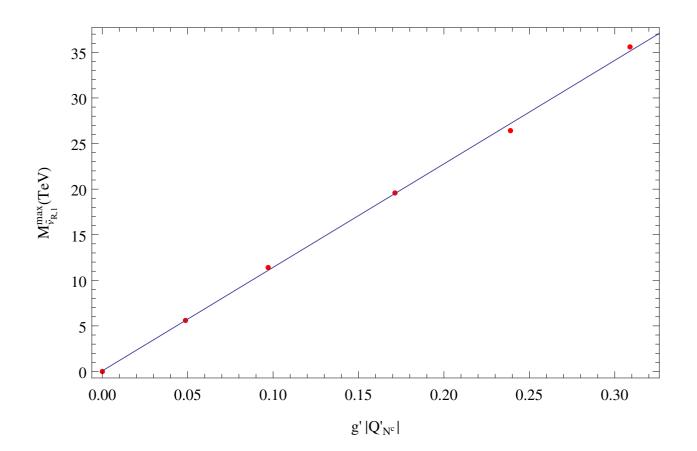
(Reasonably) well motivated model: MSSM $+\nu_R$ Superfield (SM singlet) +E(6) inspired U(1), broken by SM singlet N

LHC: $m_{Z'} \gtrsim 4 \text{ TeV} \gg m_Z, m_h$ \implies one physical Higgs $\simeq N$, with $m_N \simeq m_{Z'}!$

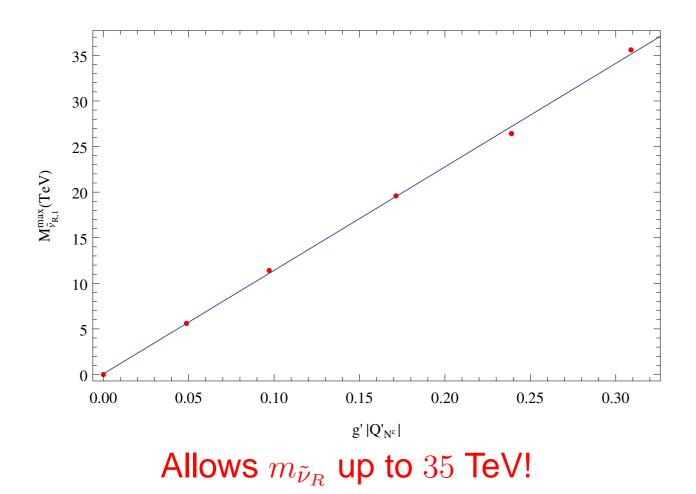
 $\tilde{\nu}_R \tilde{\nu}_R N$ coupling $\propto g' m_{Z'}$ (*D*-term): allows *S*-wave pole for $m_{\tilde{\nu}_R} \simeq m_N/2 \simeq m_{Z'}/2!$

Maximal annihilation cross section scales with square of this coupling, which depends on $\theta(E6)$, mixing angle between the two U(1) factors

(Reasonably) well motivated model: MSSM $+\nu_R$ Superfield (SM singlet) +E(6) inspired U(1), broken by SM singlet N


LHC: $m_{Z'} \gtrsim 4 \text{ TeV} \gg m_Z, m_h$ \implies one physical Higgs $\simeq N$, with $m_N \simeq m_{Z'}!$

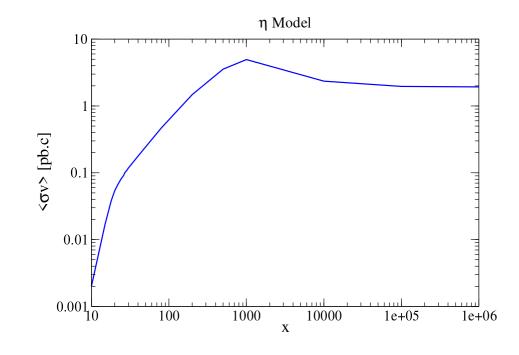
 $\tilde{\nu}_R \tilde{\nu}_R N$ coupling $\propto g' m_{Z'}$ (*D*-term): allows *S*-wave pole for $m_{\tilde{\nu}_R} \simeq m_N/2 \simeq m_{Z'}/2!$


Maximal annihilation cross section scales with square of this coupling, which depends on $\theta(E6)$, mixing angle between the two U(1) factors

Relic density minimized, if N coupling to final state $\simeq g_{N\tilde{\nu}_R\tilde{\nu}_R^*}$: achieved by tuning doublet Higgs masses

Result

Result



Testing this model

WIMP-nucleon scattering cross section is well below the "neutrino floor"

Testing this model

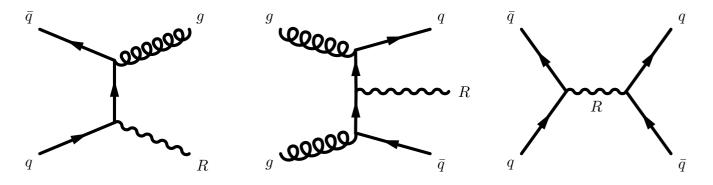
- WIMP-nucleon scattering cross section is well below the "neutrino floor"
- Cross section for indirect detection (WIMP annihilation in halo of galaxies) can be enhanced!

Mediator Coupling to Heavy Quarks

MD, Z. Zhang, arXiv:1903.00496

Vector couplings: Leads to spin-indep. interaction \implies Only couplings to u, d have to vanish Allow (equal) couplings to s, c, b, t

Mediator Coupling to Heavy Quarks


MD, Z. Zhang, arXiv:1903.00496

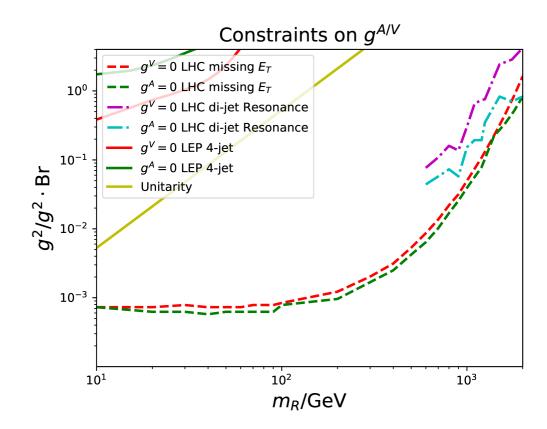
- Vector couplings: Leads to spin-indep. interaction
 Only couplings to u, d have to vanish
 Allow (equal) couplings to s, c, b, t
- Axial-vector couplings: Leads to spin-dep. interaction
 ⇒ Couplings to u, d, s have to vanish
 Allow (equal) couplings to b, t

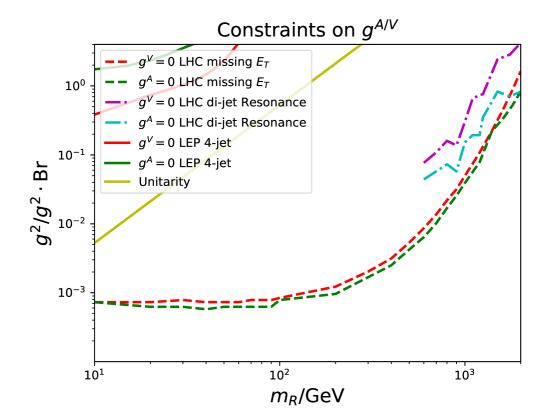
Mediator Coupling to Heavy Quarks

MD, Z. Zhang, arXiv:1903.00496

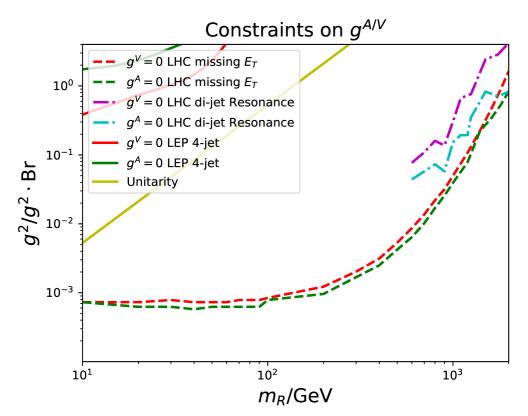
- Vector couplings: Leads to spin-indep. interaction
 Only couplings to u, d have to vanish
 Allow (equal) couplings to s, c, b, t
- Axial-vector couplings: Leads to spin-dep. interaction \implies Couplings to u, d, s have to vanish Allow (equal) couplings to b, t
- Best way to test this: LHC!

LHC constraints


Mediator couples to $b\bar{b} \implies$ searches with b-tag are most sensitive! (CheckMate says so.)


Mediator couples to $b\bar{b} \implies$ searches with b-tag are most sensitive! (CheckMate says so.)

• For mediator decay into $b\overline{b}$: Search for $b\overline{b}$ resonance (ATLAS)


Mediator couples to $b\bar{b} \implies$ searches with b-tag are most sensitive! (CheckMate says so.)

- For mediator decay into $b\overline{b}$: Search for $b\overline{b}$ resonance (ATLAS)
- For mediator decay into WIMPs: Search for $b\overline{b}$ plus missing E_T (ATLAS)

Search for WIMP pair final state competitive with "pure mediator" search!

Search for WIMP pair final state competitive with "pure mediator" search!

Search for boosted $b\overline{b}$ resonance +jet would be helpful for $m_R < 0.6$ TeV.

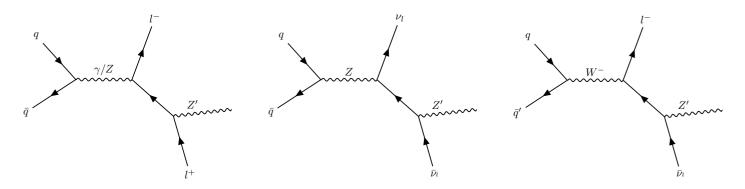
MD, M. Shi, Z. Zhang, Phys. Lett. B791 (2019) 130

Obviously no tree–level coupling to nucleons

MD, M. Shi, Z. Zhang, Phys. Lett. B791 (2019) 130

Obviously no tree–level coupling to nucleons

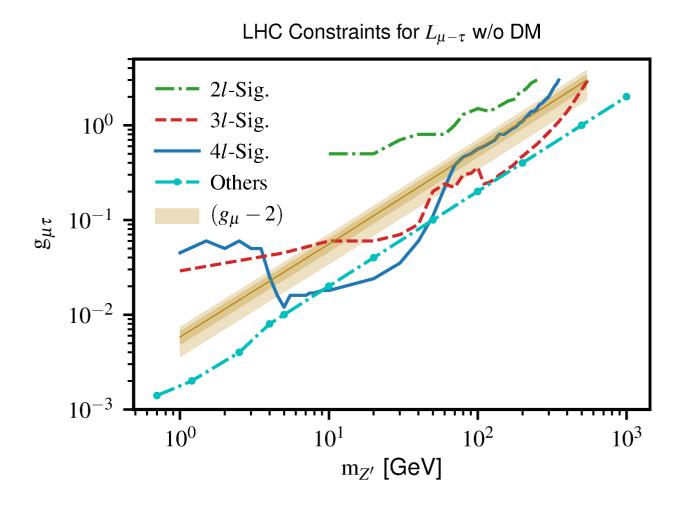
Is anomaly—free with SM fermion content! Previous model with


axial-vector couplings was anomalous.

MD, M. Shi, Z. Zhang, Phys. Lett. B791 (2019) 130

- Obviously no tree—level coupling to nucleons
- Is anomaly—free with SM fermion content! Previous model with axial—vector couplings was anomalous.
- No significant constraint from e^+e^- colliders

MD, M. Shi, Z. Zhang, Phys. Lett. B791 (2019) 130


- Obviously no tree—level coupling to nucleons
- Is anomaly—free with SM fermion content! Previous model with axial—vector couplings was anomalous.
- No significant constraint from e^+e^- colliders
- Hence, search at LHC again!

9 Get final states with up to four μ^{\pm}, τ^{\pm}

- **9** Get final states with up to four μ^{\pm}, τ^{\pm}
- Final states with single charged lepton useless (huge Drell–Yan background)

- **9** Get final states with up to four μ^{\pm}, τ^{\pm}
- Final states with single charged lepton useless (huge Drell–Yan background)
- Replacing μ^{\pm} by τ^{\pm} makes things worse \implies maximize number of muons!

• Except $Z \to \mu^+ \mu^- Z' \to 4\mu$ search (CMS), searches are not optimized: no better than old "trident" search, $\nu_\mu N \to \nu_\mu \mu^+ \mu^- N$ (CHARM, CCFR).

- Except $Z \to \mu^+ \mu^- Z' \to 4\mu$ search (CMS), searches are not optimized: no better than old "trident" search, $\nu_\mu N \to \nu_\mu \mu^+ \mu^- N$ (CHARM, CCFR).
- 3μ + missing E_T search most sensitive at LHC, except for $5 \text{ GeV} \le M_{Z'} \le 50 \text{ GeV}$

- Except $Z \to \mu^+ \mu^- Z' \to 4\mu$ search (CMS), searches are not optimized: no better than old "trident" search, $\nu_\mu N \to \nu_\mu \mu^+ \mu^- N$ (CHARM, CCFR).
- 3μ + missing E_T search most sensitive at LHC, except for $5 \text{ GeV} \le M_{Z'} \le 50 \text{ GeV}$
- Sensitivity to invisible Z' decays, in particular $Z' \rightarrow$ WIMPs, is not very good

- Except $Z \to \mu^+ \mu^- Z' \to 4\mu$ search (CMS), searches are not optimized: no better than old "trident" search, $\nu_\mu N \to \nu_\mu \mu^+ \mu^- N$ (CHARM, CCFR).
- 3μ + missing E_T search most sensitive at LHC, except for $5 \text{ GeV} \le M_{Z'} \le 50 \text{ GeV}$
- Sensitivity to invisible Z' decays, in particular $Z' \rightarrow$ WIMPs, is not very good
- Model might also be testable through heating of old neutron stars! R. Garani, J. Heeck, arXiv:1906.10145

WIMP NREFT?

MD, R. Mehra

■ Traditionally, WIMP–nucleon scattering is described by only two operators (spin–indep., spin–dep.); formally correct for WIMP velocity $v \rightarrow 0$.

WIMP NREFT?

MD, R. Mehra

- Traditionally, WIMP–nucleon scattering is described by only two operators (spin–indep., spin–dep.); formally correct for WIMP velocity $v \rightarrow 0$.
- More generally, 13 different non-relativistic operators can contribute up to $\mathcal{O}(v^2)$ Fan, Reece, Wang 2010; Fitzpatrick et al. 2013; ...

WIMP NREFT?

MD, R. Mehra

- Traditionally, WIMP–nucleon scattering is described by only two operators (spin–indep., spin–dep.); formally correct for WIMP velocity $v \rightarrow 0$.
- More generally, 13 different non-relativistic operators can contribute up to $\mathcal{O}(v^2)$ Fan, Reece, Wang 2010; Fitzpatrick et al. 2013; ...
- Some operators scale like 3-mom. transfer $q/m_p \sim 0.1$, not like $v \sim 10^{-3}$: constraint can be comparable to usual spin-dep. one!

However...

Lorentz-invariant operators that generate these new operators in non-relat. limit generically also generate traditional spin-indep. operator: completely dominates unless its coefficient is "accidentally" suppressed by cancellation by about 1 part in 10³.

However...

- Lorentz-invariant operators that generate these new operators in non-relat. limit generically also generate traditional spin-indep. operator: completely dominates unless its coefficient is "accidentally" suppressed by cancellation by about 1 part in 10³.
- Relevant operators are P- and T-odd ⇒ corresponding Lorentz-invariant operators violate CP, often give rise to neutron EDM; resulting bound makes WIMP scattering unobservable.

Direct WIMP searches have become quite constraining!

Summary

- Direct WIMP searches have become quite constraining!
- U(1)' extended MSSM allows thermal $\tilde{\nu}_R$ WIMP with mass in excess of 30 TeV

Summary

- Direct WIMP searches have become quite constraining!
- U(1)' extended MSSM allows thermal $\tilde{\nu}_R$ WIMP with mass in excess of 30 TeV
- LHC searches for mediators not coupling to first generation quarks are not very strong; few dedicated searches as yet \implies can quite easily build models with $\mathcal{O}(100)$ GeV WIMPs!

Summary

- Direct WIMP searches have become quite constraining!
- U(1)' extended MSSM allows thermal $\tilde{\nu}_R$ WIMP with mass in excess of 30 TeV
- LHC searches for mediators not coupling to first generation quarks are not very strong; few dedicated searches as yet \implies can quite easily build models with $\mathcal{O}(100)$ GeV WIMPs!
- Motivation for "general WIMP NREFT" is weak.