

Prar Kulaseka

XXV International Symposium on Particle physics, String theory and Cosmology

1–5 July 2019 Manchester, UK

Magnetic monopoles

Tom Whyntie

Monopoles: symmetrising Maxwell

- As no magnetic monopole had ever been seen, Maxwell kept isolated magnetic charges out from his equations – making them asymmetric
- A magnetic monopole restores the symmetry to Maxwell's equations

Laws	Without magnetic monopoles	With magnetic monopoles
Gauss's law	$\mathbf{\nabla} \cdot \mathbf{E} = 4\pi \rho_e$	$\mathbf{\nabla} \cdot \mathbf{E} = 4\pi \rho_e$
Gauss's law for magnetism	$\mathbf{\nabla}\cdot\mathbf{B}=0$	$\mathbf{\nabla} \cdot \mathbf{B} = 4\pi \rho_m$
Faraday's law	$-\nabla \times \mathbf{E} = \frac{\partial \mathbf{B}}{\partial t}$	$-\nabla \times \mathbf{E} = \frac{\partial \mathbf{B}}{\partial t} + 4\pi \mathbf{J}_m$
Ampère's law	$\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} + 4\pi \mathbf{J}_e$	$\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} + 4\pi \mathbf{J}_e$

- Symmetrised Maxwell's equations invariant under rotations in (E, B) plane of the electric and magnetic field ➤ Duality
- In addition, magnetic monopole explain electric-charge quantisation

Dirac's Monopole

- Paul Dirac in 1931 hypothesised that the magnetic monopole exists
- In his conception the monopole was the end of an infinitely long and infinitely thin solenoid
- Dirac's quantisation condition:

$$ge = \left[\frac{\hbar c}{2}\right]n \quad OR \quad g = \frac{n}{2\alpha}e \quad (from \quad \frac{4\pi eg}{\hbar c} = 2\pi n \quad n = 1, 2, 3..)$$

 where g is the "magnetic charge" and α is the fine structure constant 1/137

e =

- This means that g = 68.5e (when n=1)!
- If magnetic monopole exists, then electric charge is quantised:

GUT monopoles

- 't Hooft and Polyakov (1974) showed that monopoles are fundamental solutions to non-Abelian gauge grand unification theories (GUTs)
- Topological solitons: stable, non-dissipative, finite-energy solutions
- Size: extended object
 radius > few femtometers
- Mass: ~ 10¹⁶ 10¹⁷ GeV

→ cannot be produced in particle accelerators

Monopole properties in a nutshell

- Single magnetic charge (Dirac charge): g_D = 68.5e
 - higher charges are integer multiples of Dirac charge: g = ng_D, n = 1, 2, ...
 - if carries electric charge as well, is called Dyon
- Photon-monopole coupling constant
 - large: g/Ћс ~ 20 (precise value depends on units)
 - [•] following duality arguments, may be β-dependent, $\beta = \sqrt{1 \frac{4M^2}{s}}$
- Monopoles would accelerate along field lines and not curve as electrical charges in a magnetic field – according to the Lorentz equation

$$ec{F} = g\left(ec{B} - ec{v} imes ec{E}
ight)$$

- Dirac monopole is a point-like particle; GUT monopoles are extended objects
- Monopole spin is not determined by theory → free parameter
- Monopole mass not theoretically fixed → free parameter
- Monopole interaction with matter: Cherenkov radiation, multiple scattering and high ionisation

q f(q,q)

Searches for magnetic monopoles

- Detection techniques
- Past results
- LHC

Illustration by Sandbox Studio, Chicago with Corinne Mucha

- Achieved, e.g., by **magnetic monopoles** due to ionisation $68.5^2 \approx 4700$ times higher than minimum ionising particle
- Actually, any heavy, stable, electrically charged particle, either stable or metastable, will be slow moving, so it would provide a high-ionisation signal
 - some searches for monopoles also sensitive for high electrically charged objects (HECOs)
 - multiple electric charges (H⁺⁺, Q-balls, black hole remnants, etc.) can also be highly ionising particles (HIPs)

$$-\frac{dE}{dx} = K \frac{Z}{A} g^2 \left[\ln \frac{2m_e c^2 \beta^2}{I_m} + \frac{K |g|}{2} - \frac{1}{2} - B(g) \right]$$

dx

Magnetic charge

Bethe-Bloch

formula

Bethe-Ahlen formula

Detection techniques

- High ionisation in gaseous detectors and scintillators
 - Tevatron (CDF), MACRO, ATLAS, ...
- Induction technique in superconductive coils (MoEDAL part)
 - initially for cosmic MMs; not competitive with other techniques now
 - for monopoles trapped in material: rocks, beam pipes, HERA (H1), MOEDAL detectors ...
- Cherenkov light in scintillators
 - deep-sea/ice experiments: ANTARES, IceCube
 - balloon-borne experiments (ANITA)
- Energy loss in nuclear track detectors (MoEDAL part)
 - cosmic (SLIM)
 - colliders: PETRA, CERN ISR, Tevatron (D0), LEP (MODAL, OPAL), LHC (MOEDAL)
- Catalysis of nucleon decay
 - GUT monopoles may catalyse B-number violating decays
 - Soudan, MACRO, IMB, v-telescopes (IceCube, Super-Kamiokande)
- Indirect searches
 - Diphotons (D0), air showers (Auger)

Callan-Rubakov mechanism

Monopole production at colliders

- Various high ionisation techniques (including NTDs) and induction (D0, CDF, HERA) have been used to search for monopoles at colliders before LHC startup
- A search for monopole-induced diphoton production with D0 @ Tevatron set lower 95% C.L. limits of 610, 870, or 1580 GeV on the mass of a spin 0, ½ or 1 Dirac monopole [PRL 81 (1998) 524]
- Dirac monopole production with σ > 0.05 pb at LEP was excluded by OPAL for 45 < mass < 102 GeV [PLB 663 (2008) 37]
- CDF @ Tevatron excluded MM pair production at the 95% CL for cross-section
 < 0.2 pb and monopole masses 200 < m_M < 700 GeV [PRL 96 (2006) 201801]

Collider searches ≤ 2015

Large Hadron Collider at CERN

- ATLAS and MoEDAL have performed searches for magnetic monopoles
- MoEDAL receives ~50 times less luminosity than ATLAS
- Complementarity
 - ATLAS general-purpose; based on electronic readout
 - MoEDAL dedicated to (meta)stable particles; mostly passive detectors

CMS

- Run 1: 2010 2012
 - proton-proton $\sqrt{s} = 7 8$ TeV
- Run 2: 2015 2018
 - proton-proton Vs = 13 TeV
- **Spectacular LHC performance**

ATLAS search @ 13 TeV arXiv:1905.10130, submitted to PRL

PASCOS 2019 V.A. Mitsou

ATLAS experiment

Muon chambers

Semiconductor tracker

Detectors for HIP searches

ATLAS monopole searches are based on high ionisation deposits measured in

- electronic calorimeter (EM calorimeter)
 - lead–liquid Argon with accordion geometry
- transition radiation tracker (TRT)
 - Xe-filled or Ar-filled straw drift tubes
 - outermost part of the inner detector

Electromagnetic calorimeter

High ionisation signals

arXiv:1905.10130

- Two different signals in
 - TRT: large high-threshold (HT) hit fraction, f_{HT} , due to HIP & associated δ -electrons
 - EM calorimeter: HIPs slow down (and usually stop) there, leaving a pencil-shape energy deposit, unlike extensive showers from (much lighter) electron
 - *w*: energy-dispersion variable; expresses the fraction of EM cluster energy contained in the most energetic cells in the EM presampler, EM1 and EM2 layers, when energy is well above cluster-level noise
- Trigger based on number and fraction of TRT HT hits in a narrow region around the EM calorimeter region of interest
 - hadronic calorimeter veto applied
- Offline selection enhanced using combination of f_{HT} and energy dispersion of the EM cluster w
- Background from
 - overlapping charged particles and noise in TRT straws
 - high-energy electrons and noise in EM calorimeter cells
- Data-driven background estimation based on ABCD method in the (w, f_{HT}) plane

Signal efficiency

Signal loss due to

- high HIP charge: stop before EM calorimeter
- low HIP charge: too little energy deposied in EM calorimeter, or penetrate reaching hadronic calorimeter, invoking veto

<u>arXiv:1905.10130</u>

Selection efficiency = fraction of MC events surviving the trigger and offline selection criteria

- Results based on 2015+2016 data (34.4 fb⁻¹)
 irr first ATLAS monopole search at vs = 13 TeV !
- No events observed in signal region A

ATLAS HOMES IN ON MAGNETIC MONOPOLES

The ATLAS collaboration has placed some of the tightest limits yet on the production rate of hypothetical particles known as magnetic monopoles

more >

Interpretation

- Magnetic charges probed: 1 < |g| < 2.0 g_D
 - extending previous 8 TeV results $\leq 1.5 \text{ g}_{\text{D}}$
- Upper limits on production cross section set, assuming Drell-Yan (DY) spin-0 and spin-½ kinematics, as a function of monopole mass
- Lower limits on mass set for Dirac monopoles for DY production & β-independent γ-M coupling

Mass limits based on Feynman-*like* diagrams, where perturbative calculations are impossible due to large γ-monopole coupling. They *only* serve to facilitate comparisons.

PASCOS 2019 V.A. Mitsou

MoEDAL results PRL to appear [arXiv:1903.08491]

MoEDAL detector

- Mostly passive detectors; no trigger; no readout
- Largest deployment of passive Nuclear Track
 Detectors (NTDs) at an accelerator
- First time that trapping detectors are deployed as a detector

DETECTOR SYSTEMS

- 1 Low-threshold NTD (LT-NTD) array
 - z/β > ~5-10
- 2 Very High Charge Catcher NTD (HCC-NTD) array
 z/β > ~50
- 3 TimePix radiation background monitor
- ④ Monopole Trapping detector (MMT)

MoEDAL physics program Int. J. Mod. Phys. A29 (2014) 1430050

Nuclear Track Detectors (NTDs)

- Passage of a highly ionising particle through the plastic NTD marked by an invisible damage zone ("latent track") along the trajectory
- The damage zone is revealed as a cone-shaped etch-pit when the plastic sheet is chemically etched

Plastic sheets are later **scanned** to detect etch-pits

KR39 Solum thick MKROFOL 3 sheets each 200 µm thick Auminium face plate 25 cm x 25 cm Auminium face plate 25 cm x 25 cm Auminium face plate 25 cm x 25 cm Auminium face plate 26 cm x 25 cm

22

MMTs deployment

MoEDAL

2015-2018 2012 • Installed in forward region under 11 boxes each containing 18 Al rods of beam pipe & in sides A & C 60 cm length and 2.54 cm diameter (160 kg) • Approximately **800 kg** of aluminium LHC beam pipe; interaction point \rightarrow (x) Total 2400 aluminum bars LHCb VELO

Detector position in Run 2

24

- Latest analysis is based on data extracted from all three MMT components
- MMT-1 and MMT-2 (sides) are newly added with respect to previous MoEDAL analyses

Induction technique

- Monopoles can bind to nuclei
 - large binding energy ~ $\mathcal{O}(100 \text{ keV})$
- Monopole trapping volumes analysed with superconducting quantum interference device (SQUID)
- Persistent current: difference between resulting current after and before
 - first subtract current measurement for empty holder
 - calibration constant P = 32.4 g_D / A
 - if other than zero \rightarrow monopole signature

Typical sample & pseudo-monopole curves

MMT 2015-2017 scanning

- Analysed with SQUID at ETH Zürich
- Excellent charge resolution (< 0.1 g_D)

Ξ

6

P [g_]

Detector: **794 kg** of aluminium bars

Exposure: 4.0 fb⁻¹ of 13 TeV pp

No monopole with charge > $0.5 g_D$ observed in MMT samples

√s=13 TeV

 10^{7} 10^{6}

10⁴

10²

10

10

10

10⁻¹⁰

 10^{-12}

 10^{-14}

 10^{-16}

 10^{-18}

10⁻²⁰

1000

2000

Cross-section (pb)

Drell-Yan & γ-fusion

- Photon fusion most abundant than DY for almost whole mass range at LHC energies
- No interference effects between Drell-Yan and yy processes

DY

Spin 0, β-dependent

3000

2000

√s=13 TeV

Cross-section (pb) 10^{4} 10^{6} 10^{10}

10

10

10-

 10^{-10}

10-12

10-14

 10^{-16}

10-18

 10^{-20}

1000

10⁷ 10⁶

 \rightarrow total cross section = sum DY + yy

photon fusion (PF)

DY+PF

4000 5000

Monopole Mass (GeV)

6000

Baines, Mavromatos, VAM, Pinfold, Santra, Eur. Phys. J. C78 (2018) 966

Monopole Mass (GeV)

Monopole Mass (GeV)

Analysis

- Both β -independent and β -dependent $\gamma M\overline{M}$ coupling is assumed
- Spin-1 monopoles are considered in addition to spin-0 and spin-1/2
- Both Drell-Yan and γ-fusion production mechanisms assumed
 - only H1 in HERA has considered γ-fusion before [Eur.Phys.J. C41 (2005) 133]
- Kinematics differ between DY and γγ production mechanisms; differences depend on spin
- In comparison with previous results
 - full MMT detector
 ~4 times more volume
 - ~2 times more integrated luminosity

- Acceptance losses
 - $|g| = g_D$: predominantly from punching through the trapping volume,
 - $|g| > g_D$: stopping in the material upstream of the trapping volume
- Acceptance < 0.1% for monopoles of 6g_D or higher
 - insufficient energy to traverse upstream material

PRL, to appear [arXiv:1903.08491]

PRL, to appear [arXiv:1903.08491]

- First results for monopole production via γ-fusion at LHC !
- Strongest limits for magnetic charges ≥ 3 g_D

Process /	Spin	Magnetic charge $[g_{\rm D}]$					
coupling	Spin	1	2	3	4	5	
95% CL mass limits [GeV]							
DY	0	790	1150	1210	1130	_	
DY	$^{1/2}$	1320	1730	1770	1640	_	
DY	1	1400	1840	1950	1910	1800	
DY β -dep.	0	670	1010	1080	1040	900	
DY β -dep.	1/2	1050	1450	1530	1450	_	
DY β -dep.	1	1220	1680	1790	1780	1710	
$DY + \gamma \gamma$	0	2190	2930	3120	3090	_	
$\mathrm{DY} + \gamma \gamma$	1/2	2420	3180	3360	3340	_	
$DY + \gamma \gamma$	1	2920	3620	3750	3740	_	
DY+ $\gamma\gamma \beta$ -dep.	0	1500	2300	2590	2640	_	
DY+ $\gamma\gamma \beta$ -dep.	$^{1/2}$	1760	2610	2870	2940	2900	
DY+ $\gamma\gamma \beta$ -dep.	1	2120	3010	3270	3300	3270	

Possible solutions to *perturbative* treatment of monopole production in colliders

- thermal Schwinger production in heavyion collisions [Gould & Rajantie, <u>Phys.Rev.Lett. 119 (2017) 241601</u>]
 - e.g. Pb-Pb run in November 2018
- 2. photon fusion: [Eur.Phys.J. C78 (2018) 966] perturbative coupling can be achieved for
 - ${}^{_{\rm O}}$ very slow monopoles, $\beta \rightarrow 0,$ AND
 - very large magnetic-moment parameter, $\kappa \rightarrow \infty$

 $-\frac{4M^2}{s}$

 $\beta =$

Mass limits based on Feynman-*like* diagrams, where perturbative calculations are impossible due to large γ -monopole coupling. They *only* serve to facilitate comparisons.

Monopole searches summary

PASCOS 2019 V.A. Mitsou

CMS beam pipe

Beam pipe

- most directly exposed piece of material of the experiment
- covers very high magnetic charges
- 1990's: materials from CDF, D0 (Tevatron) and H1 (HERA) subjected to SQUID scans for trapped monopoles
- 2012: first pieces of CMS beam pipe tested [EPJC72 (2012) 2212]; far from collision point
- Feb 2019: CMS and MoEDAL collaborations signed agreement transferring ownership of the Run-1 CMS beam pipe to MoEDAL
 - beryllium (highly toxic); 6 m long; Ø 4 cm
- Status & plans
 - beam pipe cut into small pieces at Univ. Alberta, Canada
 - to be scanned in SQUID at ETH Zurich

De Roeck et al, EPJC72 (2012) 1985

CERN Courier, Mar-Apr 2019

Summary & outlook

- Monopoles continue to excite interest and have been the subject of numerous experimental searches
- General-purpose experiments (ATLAS) and dedicated detectors (MoEDAL) provide *complementary* constraints in the quest for monopoles
 - ATLAS dominates low magnetic charges
 - higher luminosity than MoEDAL
 - MoEDAL is stronger in high charges
 - can also identify a monopole and measure its charge
 - NTD results expected to improve sensitivity
- Much higher charges can be probed by looking for trapped monopoles in beam pipes, e.g. CMS run 1 beam pipe
- Stay tuned for upcoming results !

Thank you for your attention!

Project supported by a 2017 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation