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Higgs and naturalness

= Why is the Higgs mass light relative to a UV scale,
mp /N << 1

= New dynamics (supersymmetry, composite Higgs,
extra dimensions) at ‘radiative distance’,

A ~mp/a~ few TeV

= Higgs with my =~ 125 GeV is somewhat heavy than in
typical supersymmetric models and somewhat light
than typical prediction of technicolour models.

= No sign of new physics at LHC or elsewhere
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Scale invariant paradigm

Hidden sector
with
spontaneously
broken scale
invariance

Visible sector
(e.g. SM)

Communication of
scale invariance
breaking via
quantum anomaly

A >>> My

* There is only one scale generated via dimensional transmutation

* Hierarchy of scales emerge only though the hierarchy of dimensionless
couplings

 The hierarchy is natural if the relevant beta-functions (aka anomaly) are
small in the infrared [Wetterich 84’; Bardeen 95’; Meissner, Nicolai;
Foot, AK, McDonald, Volkas, 07’ |
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Scale invariant SM with light dilaton

= Consider SM as an effective Wilsonian theory with ‘physical’ cut-
off A.

2
V(®1®) = Vo(A) + A(A) [@T® — 02, (A)]” + ...,
= Assume, the fundamental’ theory exhibits scale invariance.

Scale invariance implies the full conformal invariance

[Komorgodski, Schwimmer 11’°] which is spontaneously broken
down to the Poincare invariance,

SO(2,4) —» I150(1, 3)

Only one scalar (pseudo)Goldstone is relevant in the low energy
theory, the dilaton, x(z)
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Scale invariant SM with light dilaton

« This symmetry is non-linearly realized in the low-energy effective
theory. Promote all dimensionfull parameters in the low energy
action to x(x) [Coleman, 85'[:
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 Theory becomes manifestly scale invariant (up to quantum
anomaly):

) = N [qﬂ@ B €(gx)x2] it p(jx)x4
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Scale invariant SM with light dilaton

= The dilaton dependence of couplings is determined
through the relevant RG beta-functions

A8 (ax) = A0 () + By (1) In (ax/ ) + Bio (1) In® (ax /) + ...,

o) , 52\
= alnx e O(h) ) 5,\(0(:“) = B(Inx)Q

ax=p

& OBF) s

ax=p

B (1)

= At leading order, dilaton-SM interactions are given by:

Lx—SJ\/’I X l TH (SM anomaly)

fx

= The model can incorporate e.g. neutrino masses, various
DM candidates, axion physics...
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Scale invariant SM with light dilaton

= Find vacuum configuration + impose cancelation condition on
vacuum energy:

d_V () p(A) =0,
d P=/{(c —
X lo=(®),x=(x) ,Bp(A) =10
d_v =0 — ,02
ew
A2 o (@), x=(x) S(A) = -5
Viltons U ) =0 X
= Scalar mass spectrum: m3? ~ 2\(A)v?, |
mi ~ iééﬁ; ’vgw X mif , (@ 2-loop!)
it o \/g Foot, AK, Volkas, 11’

AK, Liang, 17’
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Scale invariant SM with light dilaton
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Figure 1: Plot of the allowed range of parameters (shaded region) with m2(veyw) > 0, ie., the

electroweak vacuum being a minimum. The solid line displays the cut-off scale A as function of the
top-quark mass m; for which the conditions in Eq. (6) are satisfied.

= IfA~10°GeV, m ~ 107% eV!
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Cosmological electroweak phase transition
[Arunasalam, AK, Lagger, Liang, Zhou, 17’]

= Higgs-dilaton potential: the energy densities at the origin and at
the electroweak vev are degenerate and are separated by a small
barrier (flat direction lifted by 2-loop quantum corrections).
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Cosmological electroweak phase transition

= In cosmological setting a thermal barrier is also
generated which implies that the critical temperature
of the transition is T =0.

= QCD condensates drive the electroweak phase
transition! [Witten 81’
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Cosmological electroweak phase transition

A(A D] " e
Vel = 2 12 - 22| 4 S (o1t | i tog OX — Lt/ )
X i m;

= High temperature/small field expansion:

A(A) 2 V2 5 2
h — o [ Tel
Vr(h, x) 1 { 7 =2 x
A(A) v 1 9 3
24 ew 22 | 2 el oD 2. p 22
+ ()Tt = =5 R T’ + & !6>\(A)+6yt(A)+ 59" (M) + 5¢% (W) | KT

= Solve for the dilaton field:

2 2
v v
2 X 1.2 X 2
X:2h+2T
v (%
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Cosmological electroweak phase transition

= The Higgs potential becomes:

/\(A) Ugw 2 2 4
576 ’U>2< (2 + vew/vx) T

Vil x() = [} -

1 9 3
+ T [4>\(A) + 6y2(A) + —2-g2(A) + —2—g’2(A)] h2T?

9 3
AN(A) + 637 (A) + =g*(A) + =¢"*(A) > 0 = h=01is a local minimum for

- 2 2
any ‘1.

= If so, the universe would be trapped in symmetric vacuum h=0.
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Cosmological electroweak phase transition

In h=0 vacuum all quarks are massless. SU(6)xSU(6) chiral
symmetry is broken at T.~132 MeV. The quark condensate break
the electroweak symmetry as well.

(o = (@a) |1 — (V2 — 1) o — L ( T2

- =1 12N §2

2
e S ) +o(@an sy

(Gq) ~ —(250 MeV)?

[Gasser & Leutwyler, 86|
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Cosmological electroweak phase transition

= Quark condensate tips the Higgs field from the origin, which
‘‘uns down’ classically towards the electroweak minimum,
smoothly and quickly completing the transition
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Figure 2: Vp(h) — Vp(0) for different temperatures below the chiral phase transition.
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Cosmological electroweak phase transition

= QCD with N=6 quarks undergoes first-order phase transition,
unlike the standard case with N=3 [Pisarski, Wilczek 84’].

= Formation of 6 flavour quark matter nuggets of mass ~107 kg
and size ~1 mm [Bai, Long 17’, Witten 84’]. Can constitute 100%
dark matter.

(?) =0 TOCD ~ 100 MeV (Q) ~ Uqcp (Q) ~ Vgw < TQCD
§gq) 7 g_m (gq) ~ Adep (aq) ~ Adeo
O
g?)) ': vXco (®) =0 %f:
qq QCD (qQ) =0

Figure 2: A cartoon illustrating the cosmological dynamics leading to the formation of nuggets
of six-flavor quark matter. A first-order QCD phase transition causes the baryon number to
accumulate into pockets of quark gluon plasma, which eventually cool to form 6FQM nuggets.

Taken from arXiv:1804.10249
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Cosmological electroweak phase transition

= QGravitational waves with peak frequency ~108 Hz, potentially
detectable by means of pulsar timing (EPTA, SKA...)

faw ~ Hqeo(To/Tger) ~ 107 °Hz

= Production of primordial black holes with mass M,;,~M,

R~1/Hqcp ~ Mp/Técp,
My, = R/2G ~ MP /TG p ~ 1077 kg

= QCD baryogenesis (work in progress)
(i) B+L sphaleron-mediated non-equilibrium processes are active;
(i) The CKM CP violation @ low T is strong.
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Conclusions

= Scale paradigm for natural mass hierarchies predicts a
light, feebly coupled dilaton (could be dark matter).

= Electroweak phase transition driven by the QCD chiral
phase transition and occurs at T~130 MeV.

= QCD phase transition could be strongly first order => quark
matter nuggets, black holes, gravitational waves, QCD
baryogenesis.

= Detection of a light scalar particle + the above astrophysical
signatures will provide the strong evidence for the
fundamental role of scale invariance in particle physics and
cosmology.
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For more information see the conference webpage https://indico.cern.ch/event/828038/

Welcome to TeVPA 2019 in Sydney
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Constraints on light dilaton
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FIG. 1. Scalar field parameter space, with mass mg, and corresponding DM oscillation frequency f, = mg/2m on the bottom
and top horizontal axes, and couplings of both an electron mass modulus (d; = dm_) and electromagnetic gauge modulus
(di = de) on the vertical axis. Natural parameter space for a 10 TeV cutoff is depicted in green, while the other regions and
dashed curves represent 95% CL limits from fifth-force tests (“5F”, gray), equivalence-principle tests (“EP”, orange), atomic
spectroscopy in dysprosium (“Dy”, purple), and low-frequency terrestrial seismology (“Earth”, black). The blue curve shows
the projected SNR = 1 reach of a proposed resonant-mass detector—a copper-silicon (Cu-Si) sphere 30 cm in radius—after 1.6 y
of integration time, while the red curve shows the reach for the current AURIGA detector with 8 y of recasted data. Rough
estimates of the 1-y reach of a proposed DUAL detector (pink) and several harmonics of two piezoelectric quartz resonators
(gold points) are also shown.

taken from arXiv:1508.01798, Arvanitaki, Dimopoulos Tilburg, 15’
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Light dilaton dark matter

= Light, superweekly coupled dilaton is a candidate for dark
matter particle

= Metastability implies:

_3m2 1o 10
A2 [107°== ~ 107" GeV

= Non-thermal dark matter (similar to axion), for m, S eV
behaves as an oscillating classical field
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