A supersymmetric model for gravity without gravitini

Pedro D. Alvarez

Manchester

Friday $25^{\text {th }}$ July, 2014

- M. Valenzuela (U. Mons, UACH) and J. Zanelli (CECs), $\mathrm{d}=3, \operatorname{OSp}(2 \mid 2)$: JHEP 1204, 058 (2012), arXiv:1109.3944 [hep-th].

■ $d=4, \operatorname{OSp}(4 \mid 2) \sim \operatorname{USp}(2,2 \mid 1):$ P.A., Pablo Pais (U. A. Bello), J. Zanelli, Phys Lett B 735 (2014) 314-321, arXiv:1306.1247 [hep-th].

■ d=3, USp(2|2): P.A., P. Pais, E. Rodriguez (U. Concepcion), J. Zanelli, (in preparation).

> We will present a supersymmetric model with gravity, internal gauge and matter (but without gravitini) in $d=$ $3 \& 4^{\dagger}$.

Standard supergravity multiplets
$\left(e^{a}{ }_{\mu}, \psi_{\mu}^{\alpha}, M, N, b_{\mu}\right)$:
[Stelle and West, '78,]
[Ferrara and van Nieuwenhuizen, '78].
$\left(e^{a}{ }_{\mu}, \psi_{\mu}^{\alpha}, \cdots\right)$:
[Breitenlohner, '77],
[Sohnius and West, '81].

- Construction and action principle,
- Gauge invariance,
- Concluding remarks

Case $d=3$

Gauge fields and fermionic matter in a super-connection?

The connection can be expressed more compactly as

$$
\begin{equation*}
\mathbb{A}=\underbrace{A \mathbb{K}}_{U(1)}+\underbrace{\overline{\mathbb{Q}} \Gamma \psi+\bar{\psi} \Gamma \mathbb{Q}}_{S U S Y}+\underbrace{\omega^{a} \mathrm{~J}_{a}}_{S O(2,1)}+e^{a} \mathbb{P}_{a}, \tag{1}
\end{equation*}
$$

where $A=A_{\mu} d x^{\mu}, \omega^{a}=\omega_{\mu}^{a} d x^{\mu}=1 / 2 \epsilon^{a}{ }_{b c} \omega^{b c}$ and

$$
\begin{equation*}
\Gamma=\gamma_{\mu} d x^{\mu}=\gamma_{a} e^{a}{ }_{\mu} d x^{\mu} \tag{2}
\end{equation*}
$$

The nonvanishing (anti-)commutators are given by

$$
\begin{gather*}
{\left[\mathbb{J}_{a}, \mathbb{J}_{b}\right]=\epsilon_{a b}{ }^{c} \mathbb{J}_{c},} \tag{3}\\
{\left[\mathbb{J}_{a}, \mathbb{Q}^{\alpha}\right]=\frac{1}{2}\left(\gamma_{a}\right)^{\alpha}{ }_{\beta} \mathbb{Q}^{\beta}, \quad\left[\mathbb{J}_{a}, \overline{\mathbb{Q}}_{\alpha}\right]=-\frac{1}{2} \overline{\mathbb{Q}}_{\beta}\left(\gamma_{a}\right)^{\beta}{ }_{\alpha},} \tag{4}\\
{\left[\mathbb{K}, \mathbb{Q}^{\alpha}\right]=i \mathbb{Q}^{\alpha}, \quad\left[\mathbb{K}, \overline{\mathbb{Q}}_{\alpha}\right]=-i \overline{\mathbb{Q}}_{\alpha},} \tag{5}\\
\left\{\mathbb{Q}^{\alpha}, \overline{\mathbb{Q}}_{\beta}\right\}=-\left(\gamma^{a}\right)^{\alpha}{ }_{\beta} \mathrm{J}_{a}-i \frac{1}{2} \delta^{\alpha}{ }_{\beta} \mathbb{K}, \tag{6}
\end{gather*}
$$

where $\mathbb{J}_{a}=1 / 4 \epsilon^{a b}{ }_{c} \mathbb{J}_{a b}$ and $\overline{\mathbb{Q}}_{\alpha}=\left(\mathbb{Q}^{\alpha}\right)^{T}$.
\rightarrow We do not include translations,

- Local frames $e^{a}{ }_{\mu}$ connect spinors on the tangent space to the base manifold.
- The metric $g_{\mu \nu}=\eta^{a b} e^{a}{ }_{\mu} e^{b}{ }_{\nu}$ will be consider as dynamical (although in principle could be assumed to be fixed).

In $2+1$ we have the Chern-Simons action

$$
\begin{equation*}
S=\frac{1}{2} \int\left\langle\mathbb{A} d \mathbb{A}+\frac{2}{3} \mathbb{A}^{3}\right\rangle . \tag{7}
\end{equation*}
$$

The action is (quasi)invariant under $\mathbb{A}^{\prime}=g^{-1}(\mathbb{A}+d) g$, where $g \in \operatorname{OSp}(2 \mid 2)$. Explicitly we have

$$
\begin{equation*}
S=\int A d A+\frac{1}{8}\left[\omega^{a}{ }_{b} d \omega^{b}{ }_{a}+\frac{2}{3} \omega^{a}{ }_{b} \omega^{b}{ }_{c} \omega^{c}{ }_{a}\right]+\frac{1}{2} \bar{\psi} \Gamma[\overleftarrow{\nabla}-\vec{\nabla}] \Gamma \psi, \tag{8}
\end{equation*}
$$

where $\vec{\nabla} \equiv d-i A-\frac{1}{2} \gamma_{a} \omega^{a}$, and $\bar{\nabla} \equiv \overleftarrow{d}+i A+\frac{1}{2} \gamma_{a} \omega^{a}$ are covariant derivatives for the group $U(1) \otimes S O(2,1)$ in the spin $1 / 2$ representation.

The action can be rewritten as

$$
\begin{align*}
& S[A, \psi, \omega, e]=\int A d A+\frac{1}{2}\left[\omega^{a}{ }_{b} d \omega^{b}{ }_{a}+\frac{2}{3} \omega^{a}{ }_{b} \omega^{b}{ }_{c} \omega^{c}{ }_{a}\right] \\
& +2 \bar{\psi}\left[\overleftarrow{\not \partial}-\vec{\not}+2 i A+\frac{1}{2} \gamma^{a} \psi_{a b} \gamma^{b}\right] \psi|e| d^{3} \times \underbrace{-2 e^{a} T_{a} \bar{\psi} \psi}_{\text {mass term }}, \tag{9}
\end{align*}
$$

where $|e|=\operatorname{det}\left[e^{a}{ }_{\mu}\right]=\sqrt{-g}$ and $T^{a}=d e^{a}+\omega^{a}{ }_{b} e^{b}$ is the torsion.

$$
\text { Invariance under local } U(1) \text { and local } S O(2,1) \text {. }
$$

Extra built in symmetry: local rescaling

$$
\begin{equation*}
e^{a}(x) \rightarrow \tilde{e}^{a}(x)=\lambda(x) e^{a}(x), \quad \psi(x) \rightarrow \tilde{\psi}(x)=\frac{1}{\lambda(x)} \psi(x) \tag{10}
\end{equation*}
$$

An infinitesimal gauge transformation generated by

$$
\begin{equation*}
G=\alpha K+\frac{1}{2} \lambda^{a b} J_{a b}+\bar{Q} \epsilon-\bar{\epsilon} Q \tag{11}
\end{equation*}
$$

is given by

$$
\begin{aligned}
& \delta \mathbb{A}=d G+[\mathbb{A}, G]=\delta A \mathbb{K}+\overline{\mathbb{Q}} \delta(\Gamma \psi)+\delta(\bar{\psi} \Gamma) \mathbb{Q}+\delta \omega^{a} \mathrm{~J}_{a}, \\
& U(1): \quad \delta A=d \alpha \\
& \delta(\Gamma \psi)=i \alpha(\Gamma \psi) \\
& \delta(\bar{\psi} \Gamma)=-i \alpha(\bar{\psi} \Gamma) \\
& \delta \omega^{a}=0 \\
& S O(2,1): \quad \delta A=0 \\
& \delta(\Gamma \psi)=\frac{1}{2} \lambda^{a b} \epsilon_{a b c} \gamma^{c}(\Gamma \psi) \\
& \delta(\bar{\psi} \Gamma)=-\frac{1}{2} \lambda^{a b} \epsilon_{a b c} \gamma^{c}(\bar{\psi} \Gamma) \\
& \delta \omega^{a}=d \lambda^{a}+\epsilon^{a}{ }_{b c} \omega^{b} \lambda^{c} \\
& \text { SUSY: } \quad \delta A=-\frac{i}{2}(\bar{\epsilon} \Gamma \psi+\bar{\psi} \Gamma \epsilon) \\
& \delta(\Gamma \psi)=\vec{\nabla} \epsilon \\
& \delta(\bar{\psi} \Gamma)=-\bar{\epsilon} \overleftarrow{\nabla} \\
& \delta \omega^{a}=-\left(\bar{\epsilon} \gamma^{a} \Gamma \psi+\bar{\psi} \Gamma \gamma^{a} \epsilon\right)
\end{aligned}
$$

The Lagrangian changes by a boundary term $\delta L=d \mathcal{C}_{\alpha}^{U(1)}+d \mathcal{C}_{\bar{\epsilon}, \epsilon}^{\text {susy }}+d \mathcal{C}_{\lambda}^{\text {Lor }}$

$$
\begin{align*}
& \mathcal{C}_{\alpha}^{U(1)}=2 \alpha d A, \quad \mathcal{C}_{\epsilon}^{\text {susy }}=\bar{\epsilon} \overleftarrow{\epsilon} \Gamma \Gamma+\bar{\psi}\ulcorner d \epsilon \tag{13}\\
& \mathcal{C}_{\lambda}^{L o r}=-\frac{1}{2} \epsilon_{a b c} \lambda^{a} R^{b c}+\frac{1}{2}\left(d \lambda^{a}+\epsilon^{a}{ }_{b c} \omega^{b} \lambda^{c}\right) \omega_{a} .
\end{align*}
$$

Field representation of the superalgebra

The variation of the composite field is $\delta(\Gamma \psi)=\left(\delta e^{a}\right) \gamma_{a} \psi+e^{a} \gamma_{a}(\delta \psi)$, where δe^{a} is not fixed a priori, \mathbb{P}_{a} does not appear in the connection/algebra.

- $U(1)$ transformations, $g_{\alpha}=\exp [\alpha(x) \mathbb{K}]$:

$$
\begin{equation*}
\delta A_{\mu}=\partial_{\mu} \alpha, \quad \delta \psi=i \alpha(x) \psi, \quad \delta \bar{\psi}=-i \alpha(x) \bar{\psi}, \quad \delta \omega^{a}{ }_{\mu}=0=\delta e^{a} . \tag{14}
\end{equation*}
$$

- Lorentz transformations, $g_{\lambda}=\exp \left[\lambda^{a}(x) J_{a}\right]$:

The product $\Gamma \psi=e^{a} \gamma_{a} \psi$ belongs to a reducible representation of $1 \otimes 1 / 2=1 / 2 \oplus 3 / 2$, $\delta_{\lambda}(\Gamma \psi)=\left(\delta_{\lambda} e^{a}\right) \gamma_{a} \psi+e^{a} \gamma_{a}\left(\delta_{\lambda} \psi\right)$, with

$$
\begin{align*}
& \delta_{\lambda} e^{a}=\epsilon_{b c}^{a} e^{b} \lambda^{c}, \quad \delta_{\lambda} \omega^{a}=d \lambda^{a}+\epsilon^{a}{ }_{b c} \omega^{b} \lambda^{c} \tag{15}\\
& \delta_{\lambda} \psi=\frac{1}{2} \lambda^{a} \gamma_{a} \psi, \quad \delta_{\lambda} \bar{\psi}=-\frac{1}{2} \bar{\psi} \gamma_{a} \lambda^{a}, \quad \delta_{\lambda} A=0 . \tag{16}
\end{align*}
$$

- SUSY transformations, $g_{\epsilon}=\exp [\overline{\mathrm{Q}} \epsilon(x)-\bar{\epsilon}(x) \mathbb{Q}]$:

We will assume $\delta_{\text {susy }}\left(\gamma_{\mu} \psi\right)=\gamma_{\mu} \delta_{\text {susy }} \psi$. So under supersymmetry, the spin $1 / 2$ parts, ψ and $\bar{\psi}$, transform, while e^{a} remains invariant,

$$
\begin{gather*}
\delta A_{\mu}=-\frac{i}{2}\left(\bar{\psi} \gamma_{\mu} \epsilon+\bar{\epsilon} \gamma_{\mu} \psi\right), \tag{17}\\
\delta \psi=\frac{1}{3}\left(\partial-\dot{\mathcal{A}}-\frac{1}{2} \omega^{a}{ }_{\mu} \gamma^{\mu} \gamma_{a}\right) \epsilon, \quad \delta \bar{\psi}=\overline{\delta \psi}, \tag{18}\\
\delta \omega^{a}{ }_{\mu}=-(\bar{\psi} \epsilon+\bar{\epsilon} \psi) e_{\mu}^{a}-\epsilon^{a}{ }_{b c} e_{\mu}^{b}\left(\bar{\psi} \gamma^{c} \epsilon-\bar{\epsilon} \gamma^{c} \psi\right), \tag{19}\\
\delta e_{\mu}^{a}=0 . \tag{20}
\end{gather*}
$$

Absence of gravitini

The invariance of the vielbein under SUSY allows to work in a linear representation,

$$
\begin{gather*}
\delta_{\lambda}(\Gamma \psi)=\left(\delta e^{a}\right) \gamma_{a} \psi+e^{a} \gamma_{a}(\delta \psi)=\nabla \epsilon, \tag{21}\\
\delta e^{a}{ }_{\mu}=0 \Rightarrow \quad \Rightarrow \quad \delta \psi=\frac{1}{D} \not \subset \epsilon . \tag{22}
\end{gather*}
$$

But this condition also implies invariance of the metric $g_{\mu \nu}=\eta^{a b} e^{a}{ }_{\mu} e^{b}{ }_{\nu}$ and so the absence of gravitini.
Spin components of the Rarita-Schwinger field ($1 / 2 \otimes 1=1 / 2 \oplus 3 / 2$):

$$
\begin{equation*}
\phi_{\mu}^{\alpha}=\psi_{\mu}^{\alpha}+\xi_{\mu}^{\alpha} \tag{23}
\end{equation*}
$$

the γ-traceless part ξ_{μ}^{α} carries the $s=3 / 2$ component ($\gamma^{\mu} \xi_{\mu}^{\alpha} \equiv 0$).
Projectors $P^{(1 / 2)}+P^{(3 / 2)}=1$

$$
\begin{gather*}
\left(P^{(1 / 2)}\right)_{\mu}{ }^{\nu}=\frac{1}{D} \gamma_{\mu} \gamma^{\nu}, \quad\left(P^{(3 / 2)}\right)_{\mu}^{\nu}=\delta_{\mu}^{\nu}-\frac{1}{D} \gamma_{\mu} \gamma^{\nu}, \tag{24}\\
\psi_{\mu}^{\alpha}=\left(P^{(1 / 2)}\right)_{\mu}^{\nu} \phi_{\nu}^{\alpha}, \quad \xi_{\mu}^{\alpha}=\left(P^{(3 / 2)}\right)_{\mu}^{\nu} \phi_{\nu}^{\alpha} \tag{25}
\end{gather*}
$$

so in our case

$$
\begin{equation*}
\psi_{\mu}^{\alpha}=\gamma_{\mu} \psi^{\alpha}=e^{a}{ }_{\mu} \gamma_{a} \psi^{\alpha}, \quad \text { and } \quad \xi_{\mu}^{\alpha} \equiv 0, \tag{26}
\end{equation*}
$$

We act with the projectors on the eq.

$$
\begin{equation*}
\delta_{\lambda}(\Gamma \psi)=\left(\delta e^{a}\right) \gamma_{a} \psi+e^{a} \gamma_{a}(\delta \psi)=\nabla \epsilon, \tag{27}
\end{equation*}
$$

that tell us $\psi=\frac{1}{D} \not \subset \epsilon$ and force us to impose the condition

$$
\begin{equation*}
P_{\nu}^{(3 / 2) \mu} \nabla_{\mu} \epsilon=0 \tag{28}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\nabla_{\mu} \epsilon=\gamma_{\mu} \chi(x) \quad \Rightarrow \quad \delta \psi=\chi(x) \tag{29}
\end{equation*}
$$

Integrability conditions $\left[\nabla_{\mu}, \nabla_{\nu}\right] \epsilon \Rightarrow$
Flat space: $\epsilon=\epsilon^{(0)}+x^{\mu} \gamma_{\mu} \epsilon^{(1)}$ where $\epsilon^{(0)}, \epsilon^{(1)}=$ const, Flat space \& $A_{\mu}=\partial_{\mu} \alpha(x): \epsilon=e^{i \alpha}\left(\epsilon^{(0)}+x^{\mu} \gamma_{\mu} \epsilon^{(1)}\right)$.

Here we will comment on the existence of nontrivial classical solutions. For the present picture they are relevant as a dynamical symmetry breaking mechanism.

The field equations are

$$
\begin{align*}
& \delta A \rightarrow \tag{30}\\
& F_{\mu \nu}=\epsilon_{\mu \nu \lambda} j^{\lambda}, \quad j^{\mu}=-i|e| \bar{\psi} \gamma^{\mu} \psi \tag{31}\\
& \delta \omega \rightarrow \quad R^{a b}=2 e^{a} e^{b} \bar{\psi} \psi, \quad \Rightarrow \quad R^{a}{ }_{b} e^{b}=0=D D e^{a}=D T^{a} \tag{32}\\
& \delta \bar{\psi} \rightarrow \quad\left[\not \partial-i \not A-\frac{1}{4} \gamma^{a} \psi_{a b} \gamma^{b}+\frac{\kappa}{2}+\frac{1}{2|e|} \partial_{\mu}\left(|e| E_{a}{ }^{\mu}\right) \gamma^{a}\right] \psi=0 \tag{33}\\
& \delta e \rightarrow \quad \bar{\psi}\left[\gamma^{b} \Delta_{a b}^{\mu \lambda} \ddot{\partial}_{\lambda}-\overleftarrow{\not \partial}_{\lambda} \gamma^{b} \Delta_{a b}^{\mu \lambda}-2 i \gamma^{b} \Delta_{a b}^{\mu \lambda} A_{\lambda}+\epsilon^{\mu \nu \lambda} T_{a \nu \lambda}\right] \psi=0
\end{align*}
$$

where

$$
\begin{equation*}
|e| \kappa d^{3} x \equiv e^{a} T_{a}, \quad \text { and } \quad \Delta_{a b}^{\mu \nu}=|e|\left(E_{a}^{\mu} E_{b}^{\nu}-E_{b}{ }^{\mu} E_{a}{ }^{\nu}\right) \tag{34}
\end{equation*}
$$

Let us consider infinitesimal fermionic exitatons $\psi \sim \varepsilon$

$$
\begin{gather*}
F_{\mu \nu}=0, \tag{35}\\
R^{a b}=0=d \omega^{a b}+\omega^{a}{ }_{c} \omega^{c b}, \tag{36}
\end{gather*}
$$

By counting free components we can suggest the following ansatz

$$
\begin{equation*}
T^{a}=\tau \epsilon^{a b c} e_{b} e_{c}+\beta e^{a}, \quad \stackrel{D T^{a}=0}{\Longrightarrow} \quad d \tau+\tau \beta=0, \quad d \beta=0, \tag{37}
\end{equation*}
$$

we have either (I) $\tau=0$ and β-closed or (II) $\tau \neq 0$ and $\beta=-d \log \tau$, but (II) contains (I), so we can chose

$$
\begin{equation*}
T^{a}=\tau \epsilon^{a b c} e_{b} e_{c}-\frac{d \tau}{\tau} e^{a}, \tag{38}
\end{equation*}
$$

and using the Weyl invariance we can finally write

$$
\begin{equation*}
T^{a}=-\frac{m}{3} \epsilon^{a b c} e_{a} e_{b} \tag{39}
\end{equation*}
$$

The integration constant m can be identified as the mass of the fermionic excitation.

We separate the metric contribution to the torsion

$$
\begin{equation*}
\omega^{a b}=\bar{\omega}^{a b}+\kappa^{a b}, \quad d e^{a}+\bar{\omega}^{a}{ }_{b} e^{b}=0, \quad T^{a}=\kappa^{a}{ }_{b} e^{b}, \tag{40}
\end{equation*}
$$

where $\kappa^{a b}=-\kappa^{b a}$ is the contorsion.
From the solution of the torsion we read the contorsion

$$
\begin{equation*}
T^{a}=-\frac{m}{3} \epsilon^{a b c} e_{a} e_{b}=\kappa_{b}^{a} e^{b} \quad \Rightarrow \quad \kappa_{a b}=\frac{m}{3} \epsilon_{a b c} e^{c} \tag{41}
\end{equation*}
$$

using this we obtain an expresion for the Riemann tensor

$$
\begin{equation*}
R^{a b}=\bar{R}^{a b}+\underbrace{\bar{D} \kappa^{a b}}_{{ }_{0}^{\prime \prime}}+\kappa^{a}{ }_{c} \kappa^{c b}=\bar{R}^{a b}+\frac{2}{9} m^{2} e^{a} e^{b}=0 \tag{42}
\end{equation*}
$$

where we recognize the cosmological constant as $\lambda=-2 m^{2} / 9$.
The values of the mass and the cosmological constant are linked.

Solutions of constant curvature are well known [Brown and Henneaux, 1986], [Banados, Teitelboim and Zanelli, 1992].

Under circular symmetry we have

$$
\begin{gather*}
d s^{2}=-f^{2} d t^{2}+f^{-2} d r^{2}+(r d \phi-N d t)^{2}, \tag{43}\\
f^{2}=(r / \ell)^{2}-M+(J / 2 r)^{2}, \quad N=-J / 2 r^{2}, \quad \lambda=-2 / \ell \tag{44}\\
\begin{array}{c|c|}
\hline \text { BTZ } & M \ell>|J| \\
\text { extremal BTZ } & M \ell=|J| \\
\text { AdS } & J=0 \text { and } M=-1 \\
\text { naked conical singularity } & -|J|<M \ell<0 \\
\hline
\end{array}
\end{gather*}
$$

Killing spinor solutions exist for AdS, massless BTZ and the extremal BTZ case preserving all, half and $1 / 4$ of the supersymmetries respectively [Coussaert and Henneaux, 1994].

The existence of killing spinors implies that the bosonic BPS vacua is stable in SG.

Case $d=4$

Connection for $\operatorname{OSp}(2 \mid 4)$

In $d=4$ we use $U S p(2,2 \mid 1)$. Translations must be included. in the connection:

$$
\begin{equation*}
\mathbb{A}=A \mathbb{K}+\overline{\mathbb{Q}}_{\alpha} \Gamma \psi^{\alpha}+\bar{\psi}_{\alpha} \Gamma Q^{\alpha}+f^{a} \mathrm{~J}_{a}+\frac{1}{2} \omega^{a b} \mathrm{~J}_{a b}, \tag{45}
\end{equation*}
$$

where $a=0, \cdots, 3, \alpha=1, \cdots, 4$. The curvature is given by

$$
\begin{equation*}
\mathbb{F} \equiv d \mathbb{A}+\mathbb{A} \wedge \mathbb{A}=\mathcal{F} \mathbb{K}+\overline{\mathbb{Q}}_{\alpha} \mathcal{F}^{\alpha}+\overline{\mathcal{F}}_{\alpha} Q^{\alpha}+\mathcal{F}^{a} \mathrm{~J}_{a}+\frac{1}{2} \mathcal{F}^{a b} \mathrm{~J}_{a b} \tag{46}
\end{equation*}
$$

What invariants we can use as an action principle?

so

$$
\begin{equation*}
\mathbb{F} \sim F \mathbb{K}+\bar{Q}_{\alpha}^{i} \mathcal{F}_{i}^{\alpha}+D f^{a} \mathrm{~J}_{a}+\frac{1}{2} R^{a b} \mathrm{~J}_{a b}, \tag{47}
\end{equation*}
$$

The only invariant is

$$
\begin{equation*}
P_{1}=\langle\mathbb{F} \mathbb{F}\rangle \tag{48}
\end{equation*}
$$

The invariant P_{1} is a closed form -the Chern class-, whose integral over a compact manifold is a topological invariant (Chern-Weil theorem).

The Lagrangian must be an invariant of smaller group.

Sensible invariants engineering

MacDowell, Mansouri, Phys Rev Lett 38 (1977) 739-742,
Chamseddine, West, Nucl Phys B 129 (1977) 39.
For the gravity part we need a symmetry breaking operator. Using $S^{A} B=\left(\Gamma_{5}\right)^{A}{ }_{B}$ we define

$$
\begin{equation*}
\tilde{\mathbb{F}}=* \mathcal{F} \mathbb{K}+\overline{\mathbb{Q}}_{\alpha} \mathcal{F}^{\alpha}+\overline{\mathcal{F}}_{\alpha} Q^{\alpha}+\mathcal{F}^{a} \mathrm{~J}_{a}+\frac{1}{2} \mathcal{F}^{a b} \mathrm{~J}_{a b}, \tag{49}
\end{equation*}
$$

possible invariants are

$$
\begin{align*}
P_{1}=\langle\mathbb{F} \wedge \mathbb{F}\rangle, & P_{2}=\langle\mathbb{F} \wedge * \mathbb{F}\rangle, \quad P_{3}=\langle\mathbb{F} \wedge \tilde{F}\rangle, \tag{50}\\
P_{4}=\langle S . \mathbb{F} \wedge \mathbb{F}\rangle, & P_{5}=\langle S . \mathbb{F} \wedge * \mathbb{F}\rangle, \quad P_{6}=\langle S . \mathbb{F} \wedge \tilde{\mathbb{F}}\rangle . \tag{51}
\end{align*}
$$

- P_{1} is a topological invariant.
- P_{4} does not yield a Lagrangian for the $U(1)$ field.
- P_{3} and P_{5} give gravitational Pontryagin forms.
- P_{2} have second order derivatives for the fermion.
- P_{6} give better results.

Sensible invariants engineering

MacDowell, Mansouri, Phys Rev Lett 38 (1977) 739-742,
Chamseddine, West, Nucl Phys B 129 (1977) 39.
For the gravity part we need a symmetry breaking operator. Using $S^{A} B=\left(\Gamma_{5}\right)^{A}{ }_{B}$ we define

$$
\begin{equation*}
\tilde{\mathbb{F}}=* \mathcal{F} \mathbb{I}+\overline{\mathbb{Q}}_{\alpha} \mathcal{F}^{\alpha}+\overline{\mathcal{F}}_{\alpha} Q^{\alpha}+\mathcal{F}^{a} \mathrm{~J}_{a}+\frac{1}{2} \mathcal{F}^{a b} \mathrm{~J}_{a b}, \tag{49}
\end{equation*}
$$

possible invariants are

$$
\begin{gather*}
P_{1}=\langle\mathbb{F} \wedge \mathbb{F}\rangle, \quad P_{2}=\langle\mathbb{F} \wedge * \mathbb{F}\rangle, \quad P_{3}=\langle\mathbb{F} \wedge \tilde{\mathbb{F}}\rangle, \tag{50}\\
P_{4}=\langle S \cdot \mathbb{F} \wedge \mathbb{F}\rangle, \quad P_{5}=\langle S \cdot \mathbb{F} \wedge * \mathbb{F}\rangle, \quad P_{6}=\langle S . \mathbb{F} \wedge \tilde{\mathbb{F}}\rangle . \tag{51}
\end{gather*}
$$

- P_{1} is a topological invariant.
- P_{4} does not yield a Lagrangian for the $U(1)$ field.
- P_{3} and P_{5} give gravitational Pontryagin forms.
- P_{2} have second order derivatives for the fermion.
- P_{6} give better results.

The Lagrangian will be $L=\langle F \circledast F\rangle$, where $\circledast=(*, S)\left(\Rightarrow \circledast^{2}=-1\right)$

Action for $d=4$

Gauge and gravity kinetic terms:

$$
\begin{array}{lll}
L & \supset 2 F * F=|e| F_{\mu \nu} F^{\mu \nu} d^{4} x \\
L & \supset & \frac{1}{4} \epsilon_{a b c d}\left(R^{a b}+f^{a} f^{b}\right)\left(R^{c d}+f^{c} f^{d}\right) . \\
L & \supset & \bar{\psi} \phi \gamma_{5} f \hat{\nabla}(\notin \psi)-(\bar{\psi} \phi) \overleftarrow{\nabla} f \gamma_{5} \phi \psi \tag{54}
\end{array}
$$

'Townsend' identification $f^{a}=\mu e^{a}$ Phys Rev D 15 (1977) 2795
Nambu-Jona-Lasinio term for dynamical symmetry breaking Phys. Rev. 122 (1961) 345; Phys. Rev. 124 (1961)

$$
\begin{equation*}
L \supset g\left[(\bar{\psi} \psi)^{2}-\left(\bar{\psi} \Gamma_{5} \psi\right)^{2}\right] \tag{55}
\end{equation*}
$$

Action for $d=4$

Scales come with the identification $f^{a}=\mu \mathrm{e}^{a}$ and $\psi_{\text {physical }} \sim \sqrt{\nu} \psi$.
Fermion cuadratic mass term: $m \sim \mu^{2} / \nu$ and NJL coupling constant: $g=(3 \nu)^{-2}$.
Newton's constant $G=-s^{2}\left(4 \pi \mu^{2}\right)^{-1}$ and cosmological constant $\Lambda=-s^{2} \mu^{2}$.
NJL mass for a cut-off \mathcal{M},

$$
\begin{equation*}
\frac{m_{\mathrm{NJL}}^{2}}{\mathcal{M}^{2}} \log \left[1+\frac{\mathcal{M}^{2}}{m_{\mathrm{NJL}}^{2}}\right]=1-\frac{2 \pi^{2}}{g \mathcal{M}^{2}} \tag{56}
\end{equation*}
$$

Contributions to the cosmological constant,

$$
\begin{equation*}
\Lambda_{\mathrm{eff}}=\Lambda+\frac{2}{\nu}\langle\bar{\psi} \psi\rangle-\frac{3 m_{\mathrm{NJL}}}{2 \mu^{2}}\langle\bar{\psi} \psi\rangle \tag{57}
\end{equation*}
$$

Is it possible to avoid fine tunning?.

Summary

- Local $U(1)$ and $S O(2,1)$ and SUSY if the background allow it.
- The metric is required by matter $(s=1 / 2)$.
- Mass splitting without or with partial susy breaking.
- Weyl invariance $e \rightarrow \lambda e$. Mass term without breaking conformal symmetry.
- Existence of classical solutions.
- Level of fine tunning.
- Cosmological applications.
- Chiral matter.
- Higher dimensions.

Thank you for your attention!

Backup slides

- Only non-trivial unification of Poincaré and internal symmetries.
- Fewer free parameters / hierarchy problem.
- Positivity of energy, stable groundstates (BPS).
- Improved U.V. behaviour $\infty_{B}+\infty_{F}=0$.
- Unification betwen B-F.

$$
\left[\begin{array}{l}
B \tag{58}\\
F
\end{array}\right]^{\prime}=Q\left[\begin{array}{l}
B \\
F
\end{array}\right]
$$

We need SUSY-Breaking!.

Bosons	Fermions
Carriers of interactions	Building blocks of matter
Interaction potentials	Sources
(not conserved)	(conserved currents)
Spin 1 fields (poss. ex. Higgs)	Spin $1 / 2$
1-forms $A_{\mu} d x^{\mu}$	zero-forms ψ
Connections (adj. rep.)	sections (vector reps.)
2nd order field eqns.	1st order field eqns.

Supersymmetry trick

For each field include another of the opposite statistics

photon	\rightarrow	photino	electron	\rightarrow	selectron
gluon	\rightarrow	gluino	quark	\rightarrow	squark
graviton	\rightarrow	gravitino	neutrino	\rightarrow	sneutrino
boson	\rightarrow	bosino	fermion	\rightarrow	sfermion

Bosons and Fermions in a connection

A good suggestion come from the similarity of kinetic terms of a Chern-Simons theory and a Dirac spinor in 3-dimensions:

$$
\begin{equation*}
A d A, \quad \bar{\psi} \not \partial \psi, \tag{59}
\end{equation*}
$$

In fact, by defining:

$$
\mathbb{A}=\left[\begin{array}{ll}
\mathbb{A} & \psi \tag{60}\\
\bar{\psi} & 0
\end{array}\right]=\left[\begin{array}{ll}
\mathbb{A}^{\alpha}{ }_{\beta} & \psi^{\alpha} \\
\bar{\psi}_{\beta} & 0
\end{array}\right]_{3 \times 3},
$$

we get the correct transformation laws,

$$
\begin{gather*}
g=\left[\begin{array}{lll}
e^{i \alpha(x)} & 0 & 0 \\
0 & e^{i \alpha(x)} & 0 \\
0 & 0 & e^{2 i \alpha(x)}
\end{array}\right]=\exp [\alpha(x) \mathbb{K}] \tag{61}\\
\mathbb{A} \rightarrow \mathbb{A}^{\prime}=g^{-1} \mathbb{A} g+g^{-1} d g \quad \Rightarrow \quad\left\{\begin{array}{l}
A^{\prime}=g^{-1} A g+g^{-1} d g \\
\psi^{\prime}=g^{-1} \psi \\
\bar{\psi}^{\prime}=\bar{\psi} g
\end{array}\right. \tag{62}
\end{gather*}
$$

where $\mathbb{K}=i \operatorname{diag}(1,1,2)$ and $\not d=\gamma^{\mu} \partial_{\mu}$.

$$
\text { We could consider now } g \in U(1) \subset G \leftarrow \text { supergroup. }
$$

Antisymmetric γ-product

Let us consider the a set of γ matrices $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu}$, we can define a 1 -form in the exterior algebra defined by antisimetrized product of γ matrices

$$
\begin{array}{rll}
A=A_{\mu} d x^{\mu} & \longleftrightarrow & A=A_{\mu} \gamma^{\mu} \\
d x^{\mu} \wedge d x^{\nu}=-d x^{\nu} \wedge d x^{\mu} & \longleftrightarrow & \gamma^{\mu} \tilde{\wedge} \gamma^{\nu} \equiv \frac{1}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]=-\gamma^{\nu} \tilde{\wedge} \gamma^{\mu} \\
d^{2}=0 & \longleftrightarrow & \not d^{2}=0 \tag{65}
\end{array}
$$

The γ^{μ} matrices span a basis for an exterior algebra defined by the antisymmetrized product $\tilde{\wedge}$.

A more standard expression is obtained by writing $\mathbb{A}=\mathbb{A}_{\mu}^{a} \mathbb{T}_{a} d x^{\mu}, \mathbb{T}_{a} \in \operatorname{osp}(2 \mid 2)$

$$
\begin{equation*}
\mathbb{A}_{\mu}=A_{\mu} \mathbb{K}+\overline{\mathbb{Q}}_{\alpha}\left(\gamma_{\mu}\right)^{\alpha}{ }_{\beta} \psi^{\beta}+\bar{\psi}_{\beta}\left(\gamma_{\mu}\right)^{\beta}{ }_{\alpha} \mathbb{Q}^{\alpha}+\frac{1}{2} \omega_{\mu}^{a b} \mathrm{~J}_{a b}, \tag{66}
\end{equation*}
$$

where ψ is charged.
We can consider $\mathbb{A} \in \operatorname{osp}(1 \mid 2)$ as well

$$
\begin{equation*}
\mathbb{A}_{\mu}=A_{\mu} \mathbb{K}+\overline{\mathbb{Q}}_{\alpha}\left(\gamma_{\mu}\right)^{\alpha}{ }_{\beta} \psi^{\beta}+\bar{\psi}_{\beta}\left(\gamma_{\mu}\right)^{\beta}{ }_{\alpha} \widehat{Q^{\alpha}}+\frac{1}{2} \omega_{\mu}^{a b} \mathrm{~J}_{a b}, \tag{67}
\end{equation*}
$$

where ψ satisfies Majorana condition.

Riemann-Cartan-Sciama-Kibble gravity,

$$
\begin{equation*}
\mathcal{L}_{\mathrm{RCSK}}=\sqrt{-g} R \tag{68}
\end{equation*}
$$

where $\omega^{a b}$ and e^{a} are independent, Cartan '22 Sciama '64, Kibble '61. Riemann-Cartan space $d=1+n: x^{\mu}=\left(x^{0}, \cdots, x^{n}\right), \nabla g=0$

$$
\begin{equation*}
e^{a}=e^{a}{ }_{\mu} d x^{\mu}, \quad \omega^{a b}=\omega^{a b}{ }_{\mu} d x^{\mu}, \tag{69}
\end{equation*}
$$

- Independent notions: metricity (e^{a}) and parallelism ($\omega^{a b}$).
- Geodesics (shortest path): $\delta S=0, S=\int \sqrt{-g_{\mu \nu} d x^{\mu} d x^{\nu}}$, Parallel transport ('straightest' path): $\nabla V=0$ (or $\sim V$).
- metric: kinetic terms and energy tensor, connection: couplings.
- Cartan: economy of assumptions, Einstein: economy of number of independent fields.

Reviews: Trautman 0606062, Zanelli 0502193.

Invariant gravity theories in $d=4$

$$
\begin{align*}
E_{4} & =\epsilon_{a b c d} R^{a b} R^{c d} \tag{70}\\
\mathcal{L}_{E H} & =\epsilon_{a b c d} R^{a b} e^{c} e^{d}, \tag{71}\\
\mathcal{L}_{\Lambda} & =\epsilon_{a b c d} e^{a} e^{b} e^{c} e^{d}, \tag{72}\\
C_{2} & =R_{b} R^{b}{ }_{a}, \tag{73}\\
\mathcal{L}_{T_{1}} & =\epsilon_{a b c d} R^{a b} R^{c d}, \tag{74}\\
\mathcal{L}_{T_{2}} & =\epsilon_{a b c d} R^{a b} R^{c d}, \tag{75}
\end{align*}
$$

Troncoso, Zanelli, Class. Quan. Grav 17 (2000) 4451.
Theories with torsion:

- Extended PPN formalism (constraints using Gravity Prove B): Mao et al Phys Rev D '07
- thorough analysis (\& counter examples): Hayashi et al Phys Rev D '79
- Kleinert EJTP '10: dislocations and disclinations in a 'world crystal'.

■ Richard Hammond (not the one of Top Gear): "The necessity of torsion..." Int. J. Mod. Phys. D, 19, 2413 (2010).

- SUGRAs.

Curvature:

$$
\begin{equation*}
\mathbb{F}=\mathcal{F} \mathbb{K}+\overline{\mathbb{Q}}_{\alpha}^{i} \mathcal{F}_{i}^{\alpha}+\mathcal{F}^{a} \mathrm{~J}_{a}+\frac{1}{2} \mathcal{F}^{a b} \mathrm{~J}_{a b} \tag{77}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{F} & =F-\frac{i}{2}\left(\sigma^{3}\right)_{i}^{j} \bar{\psi}^{i} \phi \phi \psi_{j} \tag{78}\\
\mathcal{F}_{i} & =\hat{\nabla}\left(\phi \psi_{i}\right) \tag{79}\\
\mathcal{F}^{a} & =D f^{a}+\frac{1}{2} \bar{\psi}^{i} \phi \gamma^{a} \phi \psi_{i} \tag{80}\\
\mathcal{F}^{a b} & =R^{a b}+f^{a} f^{b}-\frac{1}{2} \bar{\psi}^{i} \phi \gamma^{a b} \phi \psi_{i} \tag{81}
\end{align*}
$$

some shortcuts:

$$
\begin{align*}
\phi & =e^{a} \gamma_{a}, \quad \psi=\omega^{a b} \gamma_{a b} \tag{82}\\
F & =d A \tag{83}\\
D f^{a} & =d f^{a}+\omega^{a}{ }_{b} f^{b}, \tag{84}\\
R^{a b} & =d \omega^{a b}+\omega^{a}{ }_{c} \omega^{c b} \tag{85}
\end{align*}
$$

and $\hat{\nabla}$ is the covariant derivative for the full $U(1) \otimes S O(3,2)$ gauge group in the $s=1 / 2$ representation

$$
\begin{equation*}
\hat{\nabla}_{i}^{j}\left(\phi \psi_{j}\right)=\left[\delta_{i}^{j} d()-i A\left(\sigma^{3}\right)_{i}^{j}+\delta_{i}^{j}\left(\frac{1}{2} f+\frac{1}{4} \psi\right)\right]\left(\phi \psi_{j}\right), \tag{86}
\end{equation*}
$$

