

Higgs Characterisation

via the FeynRules and MadGraph5_aMC@NLO frameworks

Kentarou Mawatari

(Vrije Universities Brussel and International Solvay Institutes)

Artoisenet, de Aquino, Demartin, Frederix, Frixione, Maltoni, Mandal, Mathews, KM, Ravindran, Seth, Torrielli, Zaro "A framework for Higgs characterisation" JHEP11(2013)043 [arXiv:1306.6464]

Sec.11 in YR3 of the LHC Higgs Cross Section Working Group (HXSWG) [arXiv:1307.1347]

Maltoni, KM, Zaro "Higgs characterisation via VBF/VH" EPJC74(2014)2710 [arXiv:1311.1829]

Demartin, Maltoni, KM, Page, Zaro
"Higgs characterisation: CP properties of the top Yukawa interaction" [arXiv:1407.5089]

Higgs Characterisation

via the FeynRules and MadGraph5_aMC@NLO frameworks

Kentarou Mawatari

(Vrije Universities Brussel and International Solvay Institutes)

Artoisenet, de Aquino, Demartin, Frederix, Frixione, Maltoni, Mandal, Mathews, KM, Ravindran, Seth, Torrielli, Zaro "A framework for Higgs characterisation" JHEP11(2013)043 [arXiv:1306.6464] SUSY2013

Sec.11 in YR3 of the LHC Higgs Cross Section Working Group (HXSWG) [arXiv:1307.1347]

Maltoni, KM, Zaro "Higgs characterisation via VBF/VH" EPJC74(2014)2710 [arXiv:1311.1829]

Demartin, Maltoni, KM, Page, Zaro "Higgs characterisation: CP properties of the top Yukawa interaction" [arXiv:1407.5089]

Higgs Characterisation

via the FeynRules and MadGraph5_aMC@NLO frameworks

Kentarou Mawatari

(Vrije Universities Brussel and International Solvay Institutes)

Artoisenet, de Aquino, Demartin, Frederix, Frixione, Maltoni, Mandal, Mathews, KM, Ravindran, Seth, Torrielli, Zaro "A framework for Higgs characterisation" JHEP11(2013)043 [arXiv:1306.6464] SUSY2013

Sec.11 in YR3 of the LHC Higgs Cross Section Working Group (HXSWG) [arXiv:1307.1347]

Maltoni, KM, Zaro "Higgs characterisation via VBF/VH" EPJC74(2014)2710 [arXiv:1311.1829]

Demartin, Maltoni, KM, Page, Zaro "Higgs characterisation: CP properties of the top Yukawa interaction" [arXiv:1407.5089]

Contents

- Introduction
 - Effective field theory approach
- Higgs characterisation framework
 - Effective Lagrangian for the spin-0 case
 - I-min MadGraph5_aMC@NLO tutorial
 - NLO+PS results:VH, H+2jets, ttH
- Summary

How can we find the BSM physics?

Find new particles/phenomena. Top-down approach: SUSY, ED, 2HDM, ... Find small deviations from the SM expectation. Bottom-up approach: Effective field theory

How can we find the BSM physics?

Is this the Standard Model scalar boson?

- Higgs boson precision measurement
- determination of the Higgs boson Lagrangian
 - the structure of the operators, linked to the spin/parity of a Higgs boson
 - distributions
 - the coupling strength
 - rate

Effective field theory approach

- Given the fact that only a 125 GeV SM-like boson and nothing else so far, the effective field theory approach is one of the best way to explore BSM effects.
- All new particles and phenomena are assumed to appear at some scale Λ .
- Not predictive at scales larger than $\Lambda \rightarrow loss$ of unitarity
- Below Λ, all new physics effects are parametrized by higher dimensional gauge invariant operators made of SM fields. → many parameters
- No assumption on the form of new physics \rightarrow model independent
- Renormalisable order by order in the scale $\Lambda \rightarrow systematically$ improvable

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \mathcal{L}_6 + \cdots$$
 $\mathcal{L}_6 = \sum_i C_i Q_i$ Buchmuller&Wyler 1986 ...
i

Higgs effective Lagrangian before vs. after EW symmetry breaking

- D6 (the gauge basis): HEL [Alloul, Fuks, Sanz, arXiv: 1310.5150]
 - Only using Standard Model gauge-eigenstates
 - Several operators may be associated with a single coupling (in the mass basis)
 - One operator associated with several couplings (in the mass basis)
 - The relation between the Higgs and gauge sectors
 - https://feynrules.irmp.ucl.ac.be/wiki/HEL
- D5 (the mass basis): HC [Artoisenet et al., arXiv: 1306.6464]
 - Couplings of the physical Higgs boson to the Standard Model (physical) states
 - One operator associated with a single coupling (and Lorentz structure)
 - No relation between the Higgs and gauge sectors
 - No assumption on the Higgs boson spin
 - https://feynrules.irmp.ucl.ac.be/wiki/HiggsCharacterisation

Universiteit Brussel

Lagrangian (TH) \Leftrightarrow Data (EXP)

Universiteit Brussel

140

180

m41 (GeV)

FeynRules(v2.0) in a nutshell

Alloul, Christensen, Degrande, Duhr, Fuks [arXiv:1310.1921]

- a Mathematica package that allows to derive Feynman rules from a Lagrangian.
- allows to export the Feynman rules to various matrix element generators, e.g. CalcHEP, FeynArts, MadGraph, Sherpa, Whizard, ...
- The only requirements on the Lagrangian are Locality and Lorentz invariance; no limitation for the dimensionality.
- Supported filed types are spin-0, 1/2, 1 (3/2, and 2 (as well as superfields).
 [Christensen, de Aquino, Deutschmann, Duhr, Fuks, Garcia-Cely, Mattelaer, KM, Oexl, Takaesu, EPJC(2013)]

MadGraph5_aMC@NLO in a nutshell

Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro [arXiv:1405.0301]

- performs automatic
 computations of tree-level
 and NLO differential cross
 sections
- matches LO and NLO calculations to parton showers via the MC@NLO method
- merges LO (MLM) and NLO (FxFx) samples that differ in parton multiplicities.

Higgs Characterisation (HC) model

• We implemented an effective Lagrangian featuring bosons $X(J^P=0^+,0^-,1^+,1^-,2^+)$

in FeynRules.

The parametrization is based on the recent work [Englert, Goncalves-Netto, KM, Plehn, JHEP(2013)].

- any-process, any-decay, any-observable
- Equally useful for theorists (it can be systematically improved, changed easily) and experimentalists (event generation easily).
- Adaptable to the present/future analyses and accuracy targets.

$$\begin{aligned} \mathcal{L}_{0}^{f} &= -\sum_{f=t,h,\tau} \bar{\psi}_{f} \left(c_{\alpha} \kappa_{Hff} g_{Hff} + i s_{\alpha} \kappa_{Aff} g_{Aff} \gamma_{5} \right) \psi_{f} X_{0} \\ \mathcal{L}_{0}^{V} &= \left\{ c_{\alpha} \kappa_{SM} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \right. \\ &- \frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \widetilde{A}^{\mu\nu} \right] \\ &- \frac{1}{2} \left[c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \widetilde{A}^{\mu\nu} \right] \\ &- \frac{1}{4} \left[c_{\alpha} \kappa_{Hgg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{Agg} g_{Agg} G_{\mu\nu}^{a} \widetilde{G}^{a,\mu\nu} \right] \\ &- \frac{1}{4} \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{4} \left[c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{4} c_{\alpha} \left[\kappa_{H\partial\gamma} A_{\nu} \partial_{\mu} A^{\mu\nu} + \kappa_{H\partial Z} Z_{\nu} \partial_{\mu} Z^{\mu\nu} \right] \\ &+ \left(\kappa_{H\partial W} W_{\nu}^{+} \partial_{\mu} W^{-\mu\nu} + h.c. \right) \right] \right\} X_{0} \end{aligned}$$

parameter	description
$\Lambda [\text{GeV}]$	cutoff scale
$c_{\alpha} (\equiv \cos \alpha)$	mixing between 0^+ and 0^-
κ_i	dimensionless coupling parameter

$$\begin{aligned} \mathcal{L}_{0}^{f} &= -\sum_{f=t,h,\tau} \bar{\psi}_{f} \left(c_{\alpha} \kappa_{Hff} g_{Hff} + i s_{\alpha} \kappa_{Aff} g_{Aff} \gamma_{5} \right) \psi_{f} X_{0} \\ \mathcal{L}_{0}^{V} &= \left\{ c_{\alpha} \kappa_{SM} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \right. \\ &- \frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \widetilde{A}^{\mu\nu} \right] \\ &- \frac{1}{2} \left[c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \widetilde{A}^{\mu\nu} \right] \\ &- \frac{1}{4} \left[c_{\alpha} \kappa_{Hgg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{Agg} g_{Agg} G_{\mu\nu}^{a} \widetilde{G}^{a,\mu\nu} \right] \\ &- \frac{1}{4} \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{4} \left[c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{4} \frac{1}{4} c_{\alpha} \left[\kappa_{H\theta\gamma} A_{\nu} \partial_{\mu} A^{\mu\nu} + \kappa_{H\thetaZ} Z_{\nu} \partial_{\mu} Z^{\mu\nu} \right] \\ &+ \left(\kappa_{H\thetaW} W_{\nu}^{+} \partial_{\mu} W^{-\mu\nu} + h.c. \right) \right] \right\} X_{0} \end{aligned}$$

parameter	description
$\Lambda ~[{ m GeV}]$	cutoff scale
$c_{\alpha} (\equiv \cos \alpha)$	mixing between 0^+ and 0^-
κ_i	dimensionless coupling parameter

$$\begin{aligned} \mathcal{L}_{0}^{f} &= -\sum_{f=t,h,\tau} \bar{\psi}_{f} \Big(c_{\alpha} \kappa_{Hff} g_{Hff} + i s_{\alpha} \kappa_{Aff} g_{Aff} \gamma_{5} \Big) \psi_{f} X_{0} \\ \mathcal{L}_{0}^{V} &= \Big\{ c_{\alpha} \kappa_{SM} \Big[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \Big] \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \widetilde{A}^{\mu\nu} \Big] \\ &- \frac{1}{2} \Big[c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \widetilde{A}^{\mu\nu} \Big] \\ &- \frac{1}{4} \Big[c_{\alpha} \kappa_{Hgg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{Agg} g_{Agg} G_{\mu\nu}^{a} \widetilde{G}^{a,\mu\nu} \Big] \\ &- \frac{1}{4} \frac{1}{4} \Big[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \Big] \\ &- \frac{1}{2} \frac{1}{4} \Big[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \Big] \\ &- \frac{1}{2} \frac{1}{4} \Big[c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \Big] \\ &- \frac{1}{4} \frac{1}{4} c_{\alpha} \Big[\kappa_{H\partial\gamma} A_{\nu} \partial_{\mu} A^{\mu\nu} + \kappa_{H\partial Z} Z_{\nu} \partial_{\mu} Z^{\mu\nu} \\ &+ \Big(\kappa_{H\partial W} W_{\nu}^{+} \partial_{\mu} W^{-\mu\nu} + h.c. \Big) \Big] \Big\} X_{0} \end{aligned}$$

parameter	description
$\Lambda ~[{ m GeV}]$	cutoff scale
$c_{\alpha} (\equiv \cos \alpha)$	mixing between 0^+ and 0^-
κ_i	dimensionless coupling parameter

$$\mathcal{L}_{0}^{f} = -\sum_{f=t,h,\tau} \bar{\psi}_{f} (c_{\alpha} \kappa_{Hff} g_{Hff} + i s_{\alpha} \kappa_{Aff} g_{Aff} \gamma_{5}) \psi_{f} X_{0}$$

$$\mathcal{L}_{0}^{V} = \left\{ c_{\alpha} \kappa_{SM} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \right.$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \widetilde{A}^{\mu\nu} \right] \right.$$

$$- \frac{1}{2} \left[c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \widetilde{A}^{\mu\nu} \right]$$

$$- \frac{1}{4} \left[c_{\alpha} \kappa_{Hgg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{Agg} g_{Agg} G_{\mu\nu}^{a} \widetilde{G}^{a,\mu\nu} \right]$$

$$- \frac{1}{4} \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right]$$

$$- \frac{1}{4} \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right]$$

$$- \frac{1}{4} \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right]$$

$$- \frac{1}{4} c_{\alpha} \left[\kappa_{H\theta\gamma} A_{\nu} \partial_{\mu} A^{\mu\nu} + \kappa_{H\thetaZ} Z_{\nu} \partial_{\mu} Z^{\mu\nu} + \left(\kappa_{H\thetaW} W_{\nu}^{+} \partial_{\mu} W^{-\mu\nu} + h.c. \right) \right] \right\} X_{0}$$

parameter	description
$\Lambda ~[{ m GeV}]$	cutoff scale
$c_{\alpha} (\equiv \cos \alpha)$	mixing between 0^+ and 0^-
κ_i	dimensionless coupling parameter

param_card.dat

~~~~~
# INFORMATION FOR FRBLOCK
<i></i>
lock frblock
1 1.000000e+03 # Lambda
2 1.000000e+00 # ca
3 1.000000e+00 # kSM
4 1.000000e+00 # kHtt
5 1.000000e+00 # kAtt
6 1.000000e+00 # kHbb
7 1.000000e+00 # kAbb
8 1.000000e+00 # kHll
9 1.000000e+00 # kAll
10 1.000000e+00 # kHaa
11 1.000000e+00 # kAaa
12 1.000000e+00 # kHza
13 1.000000e+00 # kAza
14 1.000000e+00 # kHgg
15 1.000000e+00 # kAgg
16 0.000000e+00 # kHzz
17 0.000000e+00 # kAzz
18 0.000000e+00 # kHww
19 0.000000e+00 # kAww
20 0.000000e+00 # kHda
21 0.000000e+00 # kHdz
22 0.000000e+00 # kHdwR
23 0.000000e+00 # kHdwI

Kentarou Mawatari (Vrije U. Brussel)

11/20





$$\begin{split} \mathcal{L}_{0}^{f} &= -\sum_{f=t.b.\tau} \bar{\psi}_{f} \big( c_{\alpha} \kappa_{Hff} g_{Hff} + i s_{\alpha} \kappa_{Aff} g_{Aff} \gamma_{5} \big) \psi_{f} X_{0} \\ \mathcal{L}_{0}^{V} &= \Big\{ c_{\alpha} \kappa_{SM} \big[ \frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \big] & \text{Div} \\ as \\ &- \frac{1}{4} \big[ c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \widetilde{A}^{\mu\nu} \big] \\ &- \frac{1}{2} \big[ c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \widetilde{A}^{\mu\nu} \big] \\ &- \frac{1}{4} \big[ c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \widetilde{A}^{\mu\nu} \big] \\ &- \frac{1}{4} \big[ c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \big] \\ &- \frac{1}{4} \big[ c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \big] \\ &- \frac{1}{2} \frac{1}{4} \big[ c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \big] \\ &- \frac{1}{2} \frac{1}{4} \big[ c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \big] \\ &- \frac{1}{4} \big[ c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \big] \\ &- \frac{1}{4} \big[ c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \big] \\ &- \frac{1}{4} \big[ c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \big] \\ &- \frac{1}{4} \big[ c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \big] \\ &- \frac{1}{4} \big[ c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \big] \\ &- \frac{1}{4} \big[ c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \big] \\ &- \frac{1}{4} \big[ c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \big] \\ &- \frac{1}{4} \big[ c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \big] \\ &- \frac{1}{4} \big[ c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \big] \\ &- \frac{1}{4} \big[ c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \big] \\ &- \frac{1}{4} \big[ c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \big] \\ &- \frac{1}{4} \big[ c_{\alpha} \kappa_{HW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \big] \\ &- \frac{1}{4} \big[ c_{\alpha} \kappa_{HW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AW} W_{\mu\nu}^{+} W^{-\mu\nu} \big] \\ &- \frac{1}{4} \big[ c$$

Dimensionful couplings g are set as internal parameters so as to reproduce a SM Higgs for  $\kappa=1$ .

$g_{Xyy'}$	$\times v$	ff	ZZ/WW	$\gamma\gamma$	$Z\gamma$	<u>gg</u>
	H	$m_f$	$2m_{Z/W}^2$	$47 \alpha_{\rm EM} / 18 \pi$	$C(94\cos^2\theta_W-13)/9\pi$	$-\alpha_s/3\pi$
	A	$m_f$	0	$4\alpha_{\rm EM}/3\pi$	$2C(8\cos^2\theta_W-5)/3\pi$	$\alpha_s/2\pi$

Kentarou Mawatari (Vrije U. Brussel)





## Higher order effects in QCD

- The LO predictions can be systematically improved by including the effects due to the emission of QCD partons.
  - LO Matrix-Element/Parton-Shower merging [ME+PS]
  - full-NLO matrix element with parton-shower [MG5_aMC+Herwig/Pythia]





Universiteit Brussel



## I-min MadGraph5_aMC@NLO tutorial

FeynRules: http://feynrules.irmp.ucl.ac.be/ MG5_aMC: https://launchpad.net/mg5amcnlo



- Start the MG5_aMC shell
- 🖘 Import the model
- Solution Generate the process
- S Write the code
- Source the LO/NLO events

#### SubProcesses and Feynman diagrams

Directory	Туре	# Diagrams	# Subprocesses	FEYNMAN DIAGRAMS	SUBPROCESS
P0_ddx_x0epem_no_a	born	1	2	postscript	d d~ > x0 e+ e- XGLU=1 WEIGHTED=6 QNP=1 [ QCD ] , s s~ > x0 e+ e- XGLU=1 WEIGHTED=6 QNP=1 [ QCD ]
	virt	1	2	postscript	d d~ > x0 e+ e- WEIGHTED=6 QNP=1 QED=2 [ QCD ] , s s~ > x0 e+ e- WEIGHTED=6 QNP=1 QED=2 [ QCD ]
	real	2	2	postscript	d d~ > x0 e+ e- g XGLU=1 WEIGHTED=7 QNP=1 [ QCD ] , s s~ > x0 e+ e- g XGLU=1 WEIGHTED=7 QNP=1 [ QCD ]
	real	2	2	postscript	g d~ > x0 e+ e- d~ XGLU=1 WEIGHTED=7 QNP=1 [ QCD ] , g s~ > x0 e+ e- s~ XGLU=1 WEIGHTED=7 QNP=1 [ QCD ]
	real	2	2	postscript	d g > x0 e+ e- d XGLU=1 WEIGHTED=7 QNP=1 [ QCD ] , s g > x0 e+ e- s XGLU=1 WEIGHTED=7 QNP=1 [ QCD ]



![](_page_21_Picture_2.jpeg)

## I-min MadGraph5_aMC@NLO tutorial

![](_page_21_Figure_4.jpeg)

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_1.jpeg)

### Vector-boson associated production (VH)

scenario	HC parameter	choice		
$0^{+}(SM)$	$\kappa_{\rm SM} = 1 \ (c_{\alpha} =$	1)		
$0^+(HD)$	$\kappa_{HZZ,HWW} = 1$	$(c_{\alpha}=1)$		Maltoni, KM, Zaro [arXiv:1311.1829]
$0^+(\mathrm{HDder})$	$\kappa_{H\partial Z,H\partial W} = 1$	$(c_{\alpha} = 1)$		$P_{1} = \frac{1}{2} P_{1} = \frac{1}$
$0^+(SM+HD)$	$\kappa_{SM,HZZ,HWW}$	$= 1 \ (c_{\alpha} = 1, \Lambda =$	v)	$pp \rightarrow \chi_0 z (z \rightarrow e e) at the Endo, NEO+10 0 (SM) 0^* (HD) - 0^* ($
$0^{-}(HD)$	$\kappa_{AZZ,AWW} = 1$	$(c_{\alpha}=0)$	_	10 ⁻¹
$0^{\pm}(\text{HD})$	$\kappa_{HZZ,AZZ,HWW}$	$c_{AWW} = 1 \ (c_{\alpha} = 1)$	$1/\sqrt{2}$	10 (3M+HD)
scenario	$\sigma_{ m LO}~({ m fb})$	$\sigma_{\rm NLO}~({\rm fb})$	K	
$0^{+}(SM)$	$10.13(1) \begin{array}{c} +0.0\% \\ -0.5\% \end{array}$	$13.24(1) \begin{array}{c} +2.2\% \\ -1.7\% \end{array}$	1.31	
$0^+(HD)$	$2.638(2) \stackrel{+1.4\%}{_{-1.7\%}}$	$3.461(3) \begin{array}{c} +1.9\% \\ -1.3\% \end{array}$	1.31	
$0^+(\mathrm{HDder})$	$48.61(4) \begin{array}{c} +4.2\% \\ -3.9\% \end{array}$	$63.59(5) \begin{array}{c} +2.1\% \\ -1.9\% \end{array}$	1.31	
$0^+(SM+HD)$	$19.95(1) \begin{array}{c} +3.1\% \\ -3.1\% \end{array}$	$26.24(2) + 1.8\% \\ -1.6\%$	1.32	aMC@NLO+HERWIG6
$0^{-}(HD)$	$1.480(1) \begin{array}{c} +2.6\% \\ -2.7\% \end{array}$	$1.952(1) \begin{array}{c} +1.7\% \\ -1.5\% \end{array}$	1.32	10 ⁻ 14 NLO+PS/NLO
$0^{\pm}(\mathrm{HD})$	$2.061(1) \stackrel{+1.9\%}{_{-2.0\%}}$	$2.705(2) \stackrel{+1.8\%}{_{-1.3\%}}$	1.31	1.2
<ul> <li>Scale and PDF uncertainties are evaluated</li> </ul>				
automatically at no extra computing cost via a				
reweighting technique.			1	

• Such information is available on an event-byevent basis and therefore uncertainty bands can be plotted for any observables of interest.

300

350

400

150

200

pT lep,hard (GeV)

250

50

100

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

## Higgs + 2 jets

#### Maltoni, KM, Zaro [arXiv:1311.1829]

![](_page_23_Figure_4.jpeg)

![](_page_23_Figure_5.jpeg)

#### LHC 8 TeV

Scenario	$\sigma_{\rm LO}$ (fb)	$\sigma_{\rm NLO}$ (fb)	K
0 ⁺ (SM)	1509(1) ^{+4.7} % -4.4 %	1633(2) ^{+2.0} %	1.08
0 ⁺ (HD)	69.66(6) ^{+7.5} % _6.6 %	67.08(13) ^{+2.2} % -2.3 %	0.96
0 ⁺ (HDder)	721.9(6) ^+11.0 %9.0 %	684.9(1.5) ^{+2.3} %	0.95
0 ⁺ (SM+HD)	3065(2) +5.6 %	3144(5) ^{+1.6} %	1.03
0 ⁻ (HD)	57.10(4) ^{+7.7} % -6.7 %	55.24(11) +2.1 %	0.97
$0^{\pm}(\text{HD})$	63.46(5) ^{+7.6} % -6.7 %	61.07(13) ^{+2.3} % -2.0 %	0.96

#### Demartin, Maltoni, KM, Page, Zaro [arXiv:1407.5089]

![](_page_23_Figure_9.jpeg)

![](_page_23_Figure_10.jpeg)

scenario		$\sigma_{\rm LO}~({\rm pb})$	$\sigma_{\rm NLO}$ (pb)	K
	0+	$1.351(1)^{+67.1}_{-36.8}\pm4.3\%$	$1.702(6)  {}^{+19.7}_{-20.8}  {\pm} 1.7\%$	1.26
LHC 8 $TeV$	0-	$2.951(3)  {}^{+67.2}_{-36.8} \pm 4.4\%$	$3.660(15) {}^{+19.1}_{-20.6} \pm 1.7\%$	1.24
	$0^{\pm}$	$2.142(2) ~{}^{+67.1}_{-36.8} \pm 4.4\%$	$2.687(10) {}^{+19.6}_{-20.8} {\pm} 1.7\%$	1.25

 NLO corrections improve the predictions of the total rates by reducing the scale dependence and the PDF+αs uncertainty.

![](_page_24_Picture_0.jpeg)

Universiteit Brussel

#### GF vs.VBF

![](_page_24_Figure_3.jpeg)

• Di-jet correlations are still sensitive probes of the CP mixing of the Higgs boson even after PS.

![](_page_24_Figure_5.jpeg)

![](_page_25_Figure_0.jpeg)

K factor and the constant theoretical uncertainties.

2

|∆η(l⁺,Γ)|

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_1.jpeg)

## Summary

- After the discovery of a Higgs-like resonance at the LHC, the main focus of the studies now is the determination of the Higgs Lagrangian.
- This includes
  - the structure of the operators,
  - the coupling strength.
- The Higgs Characterisation (HC) results at NLO+PS are obtained in a fully automatic way through the implementation of the relevant interactions in FeynRules and then performing event generation in the MadGraph5_aMC@NLO framework.
- NLO corrections improve the predictions by reducing the theoretical uncertainties, and NLO+PS effects need to be accounted for to make accurate predictions on the kinematical distributions.

![](_page_27_Picture_0.jpeg)

![](_page_27_Picture_1.jpeg)

![](_page_27_Picture_2.jpeg)

![](_page_28_Picture_0.jpeg)

![](_page_28_Picture_1.jpeg)

## D6 Higgs Effective Lagrangian

#### [ from Contino, Ghezzi, Grojean, Muhlleitner, Spira (JHEP '13) ] [ Alloul, Fuks, Sanz (1310.5150) ]

$$\mathcal{L}_{F_{1}} = \frac{i\bar{c}_{HQ}}{v^{2}} [\bar{Q}_{L}\gamma^{\mu}Q_{L}] [\Phi^{\dagger}\overleftrightarrow{D}_{\mu}\Phi] + \frac{4i\bar{c}_{HQ}'}{v^{2}} [\bar{Q}_{L}\gamma^{\mu}T_{2k}Q_{L}] [\Phi^{\dagger}T_{2}^{k}\overleftrightarrow{D}_{\mu}\Phi]$$

$$+ \frac{i\bar{c}_{Hu}}{v^{2}} [\bar{u}_{R}\gamma^{\mu}u_{R}] [\Phi^{\dagger}\overleftrightarrow{D}_{\mu}\Phi] + \frac{i\bar{c}_{Hd}}{v^{2}} [\bar{d}_{R}\gamma^{\mu}d_{R}] [\Phi^{\dagger}\overleftrightarrow{D}_{\mu}\Phi]$$

$$- \left[\frac{i\bar{c}_{Hud}}{v^{2}} [\bar{u}_{R}\gamma^{\mu}d_{R}] [\Phi^{\dagger}\overleftrightarrow{D}_{\mu}\Phi] + h.c.\right]$$

$$+ \frac{i\bar{c}_{HL}}{v^{2}} [\bar{L}_{L}\gamma^{\mu}L_{L}] [\Phi^{\dagger}\overleftrightarrow{D}_{\mu}\Phi] + \frac{4i\bar{c}_{HL}'}{v^{2}} [\bar{L}_{L}\gamma^{\mu}T_{2k}L_{L}] [\Phi^{\dagger}T_{2}^{k}\overleftrightarrow{D}_{\mu}\Phi]$$

$$+ \frac{i\bar{c}_{He}}{v^{2}} [\bar{e}_{R}\gamma^{\mu}e_{R}] [\Phi^{\dagger}\overleftrightarrow{D}_{\mu}\Phi] + \frac{4i\bar{c}_{HL}'}{v^{2}} [\bar{L}_{L}\gamma^{\mu}T_{2k}L_{L}] [\Phi^{\dagger}T_{2}^{k}\overleftrightarrow{D}_{\mu}\Phi]$$

$$+ \frac{i\bar{c}_{He}}{v^{2}} [\bar{e}_{R}\gamma^{\mu}e_{R}] [\Phi^{\dagger}\overleftrightarrow{D}_{\mu}\Phi] ,$$

$$\mathcal{L}_{F_{2}} = \left[ -\frac{2g'\bar{c}_{uB}}{m_{W}^{2}}y_{u} \Phi^{\dagger} \cdot \bar{Q}_{L}\gamma^{\mu\nu}u_{R} B_{\mu\nu} - \frac{4g\bar{c}_{aW}}{m_{W}^{2}}y_{u} \Phi^{\dagger} \cdot (\bar{Q}_{L}T_{2k})\gamma^{\mu\nu}u_{R} W_{\mu\nu}^{k} - \frac{4g\bar{c}_{aW}}{m_{W}^{2}}y_{u} \Phi^{\dagger} \cdot \bar{Q}_{L}\gamma^{\mu\nu}d_{R} B_{\mu\nu}$$

$$- \frac{4g\bar{s}\bar{c}_{uG}}{m_{W}^{2}}y_{u} \Phi^{\dagger} \cdot \bar{Q}_{L}\gamma^{\mu\nu}T_{a}u_{R}G_{\mu\nu}^{a} + \frac{2g'\bar{c}_{dB}}{m_{W}^{2}}y_{d} \Phi\bar{Q}_{L}\gamma^{\mu\nu}d_{R} B_{\mu\nu}$$

$$+ \frac{4g\bar{c}_{dW}}{m_{W}^{2}}y_{d} \Phi(\bar{Q}_{L}T_{2k})\gamma^{\mu\nu}d_{R} W_{\mu\nu}^{k} + \frac{4g\bar{c}_{dG}}{m_{W}^{2}}y_{d} \Phi\bar{Q}_{L}\gamma^{\mu\nu}T_{a}d_{R}G_{\mu\nu}^{a}$$

$$+ \frac{2g'\bar{c}_{eB}}{m_{W}^{2}}y_{\ell} \Phi\bar{L}_{L}\gamma^{\mu\nu}e_{R} B_{\mu\nu} + \frac{4g\bar{c}_{eW}}{m_{W}^{2}}y_{\ell} \Phi(\bar{L}_{L}T_{2k})\gamma^{\mu\nu}e_{R} W_{\mu\nu}^{k} + h.c. \right]$$

#### The model file is publicly available. (<u>https://feynrules.irmp.ucl.ac.be/wiki/HEL</u>)

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_2.jpeg)

#### Mapping between the D6 and D5 operators

#### HC [arXiv: 1306.6464]

$\mathcal{L}_0^f = -\sum_{f=t,b,\tau} \bar{\psi}_f \big( c_\alpha \kappa_{Hff} g_{Hff} + i s_\alpha \kappa_{Aff} g_{Aff} \gamma_5 \big) \psi_f X_0$
$\mathcal{L}_{0}^{V} = \left\{ c_{\alpha} \kappa_{\rm SM} \left[ \frac{1}{2} g_{HZZ}  Z_{\mu} Z^{\mu} + g_{HWW}  W_{\mu}^{+} W^{-\mu} \right] \right.$
$-\frac{1}{4} \left[ c_{\alpha} \kappa_{_{H\gamma\gamma}} g_{_{H\gamma\gamma}} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{_{A\gamma\gamma}} g_{_{A\gamma\gamma}} A_{\mu\nu} \widetilde{A}^{\mu\nu} \right]$
$-\frac{1}{2} \left[ c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \widetilde{A}^{\mu\nu} \right]$
$-\frac{1}{4} \left[ c_{\alpha} \kappa_{Hgg} g_{Hgg} G^{a}_{\mu\nu} G^{a,\mu\nu} + s_{\alpha} \kappa_{Agg} g_{Agg} G^{a}_{\mu\nu} \widetilde{G}^{a,\mu\nu} \right]$
$-\frac{1}{4}\frac{1}{\Lambda} \left[ c_{\alpha}\kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha}\kappa_{AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right]$
$-\frac{1}{2}\frac{1}{\Lambda} \left[ c_{\alpha}\kappa_{HWW} W^{+}_{\mu\nu} W^{-\mu\nu} + s_{\alpha}\kappa_{AWW} W^{+}_{\mu\nu} \widetilde{W}^{-\mu\nu} \right]$
$-\frac{1}{\Lambda}c_{\alpha} \Big[\kappa_{H\partial\gamma} Z_{\nu} \partial_{\mu} A^{\mu\nu} + \kappa_{H\partial Z} Z_{\nu} \partial_{\mu} Z^{\mu\nu}$
$+ \left( \kappa_{H\partial W} W^+_{\nu} \partial_{\mu} W^{-\mu\nu} + h.c. \right) \right] \bigg\} X_0$
$V_{\mu\nu} = \partial_{\mu}V_{\nu} - \partial_{\nu}V_{\mu}$ $(V = A, Z, W^{\pm}),  \widetilde{V}_{\mu\nu} = \frac{1}{2}\epsilon_{\mu\nu\rho\sigma}V^{\rho\sigma}$
$G^a_{\mu\nu} = \partial_\mu G^a_\nu - \partial_\nu G^a_\mu + g_s f^{abc} G^b_\mu G^c_\nu , \qquad $

#### HEL [arXiv: 1310.5150]

Eq. (2.25)	Ref. [46]	Section 2.1
$g_{hgg}$	$c_{\alpha}\kappa_{Hgg}g_{Hgg}$	$g_H - rac{4ar c_g g_s^2 v}{m_W^2}$
$ ilde{g}_{hgg}$	$s_{lpha}\kappa_{Agg}g_{Agg}$	$-rac{4 ilde{c}_g g_s^2 v}{m_W^2}$
$g_{h\gamma\gamma}$	$c_{lpha}\kappa_{H\gamma\gamma}g_{H\gamma\gamma}$	$a_H - rac{8gar{c}_\gamma s_W^2}{m_W}$
$\tilde{g}_{h\gamma\gamma}$	$s_{\alpha}\kappa_{A\gamma\gamma}g_{A\gamma\gamma}$	$-\frac{8g\tilde{c}_{\gamma}s_W^2}{m_W}$
$g^{(1)}_{\scriptscriptstyle hzz}$	$\frac{1}{\Lambda}c_{\alpha}\kappa_{HZZ}$	$\frac{2g}{c_W^2 m_W} \Big[ \bar{c}_{HB} s_W^2 - 4 \bar{c}_{\gamma} s_W^4 + c_W^2 \bar{c}_{HW} \Big]$
$\tilde{g}_{hzz}$	$\frac{1}{\Lambda} s_{lpha} \kappa_{AZZ}$	$\frac{2g}{c_W^2 m_W} \left[ \tilde{c}_{HB} s_W^2 - 4 \tilde{c}_\gamma s_W^4 + c_W^2 \tilde{c}_{HW} \right]$
$g^{(2)}_{hzz}$	$\frac{1}{\Lambda}c_{\alpha}\kappa_{H\partial Z}$	$\frac{g}{c_W^2 m_W} \Big[ (\bar{c}_{HW} + \bar{c}_W) c_W^2 + (\bar{c}_B + \bar{c}_{HB}) s_W^2 \Big]$
$g^{(3)}_{hzz}$	$c_{\alpha}\kappa_{\mathrm{SM}}g_{HZZ}$	$\frac{gm_W}{c_W^2} \left[ 1 - \frac{1}{2} \bar{c}_H - 2 \bar{c}_T + 8 \bar{c}_\gamma \frac{s_W^4}{c_W^2} \right]$
$g^{(1)}_{\scriptscriptstyle haz}$	$c_{lpha}\kappa_{HZ\gamma}g_{HZ\gamma}$	$\frac{gs_W}{c_W m_W} \left[ \bar{c}_{HW} - \bar{c}_{HB} + 8\bar{c}_{\gamma} s_W^2 \right]$
$\tilde{g}_{haz}$	$s_{lpha}\kappa_{\scriptscriptstyle AZ\gamma}g_{\scriptscriptstyle AZ\gamma}$	$\frac{gs_W}{c_W m_W} \Big[ \tilde{c}_{HW} - \tilde{c}_{HB} + 8\tilde{c}_{\gamma} s_W^2 \Big]$
$g^{(2)}_{haz}$	$\frac{1}{\Lambda}c_{\alpha}\kappa_{H\partial\gamma}$	$rac{gs_W}{c_W m_W} \Big[ ar{c}_{HW} - ar{c}_{HB} - ar{c}_B + ar{c}_W \Big]$
$g_{hww}^{(1)}$	$\frac{1}{\Lambda}c_{\alpha}\kappa_{HWW}$	$\frac{2g}{m_W}\bar{c}_{HW}$
$ ilde{g}_{hww}$	$\frac{1}{\Lambda} s_{\alpha} \kappa_{AWW}$	$\frac{2g}{m_W}\tilde{c}_{HW}$
$g^{(2)}_{hww}$	$\frac{1}{\Lambda}c_{\alpha}\kappa_{H\partial W}$	$\frac{g}{m_W} \left[ \bar{c}_W + \bar{c}_{HW} \right]$

Kentarou Mawatari (Vrije U. Brussel)

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_2.jpeg)

#### Mapping between the D6 and D5 operators

#### HC [arXiv: 1306.6464]

$$\begin{split} \mathcal{L}_{0}^{f} &= -\sum_{f=t,b,\tau} \bar{\psi}_{f} \left( c_{\alpha} \kappa_{\scriptscriptstyle Hff} g_{\scriptscriptstyle Hff} + i s_{\alpha} \kappa_{\scriptscriptstyle Aff} g_{\scriptscriptstyle Aff} \gamma_{5} \right) \psi_{f} X_{0} \\ \mathcal{L}_{0}^{V} &= \left\{ c_{\alpha} \kappa_{\scriptscriptstyle SM} \left[ \frac{1}{2} g_{\scriptscriptstyle HZZ} Z_{\mu} Z^{\mu} + g_{\scriptscriptstyle HWW} W_{\mu}^{+} W^{-\mu} \right] \right. \\ &- \frac{1}{4} \left[ c_{\alpha} \kappa_{\scriptscriptstyle H\gamma\gamma} g_{\scriptscriptstyle H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle A\gamma\gamma} g_{\scriptscriptstyle A\gamma\gamma} A_{\mu\nu} \widetilde{A}^{\mu\nu} \right] \\ &- \frac{1}{2} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HZ\gamma} g_{\scriptscriptstyle HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AZ\gamma} g_{\scriptscriptstyle AZ\gamma} Z_{\mu\nu} \widetilde{A}^{\mu\nu} \right] \\ &- \frac{1}{4} \left[ c_{\alpha} \kappa_{\scriptscriptstyle Hgg} g_{\scriptscriptstyle Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AZ\gamma} g_{\scriptscriptstyle AZ\gamma} Z_{\mu\nu} \widetilde{A}^{\mu\nu} \right] \\ &- \frac{1}{4} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{A} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AZZ} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{A} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{A} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{A} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{A} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{A} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{A} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{A} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{A} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{A} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{A} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{A} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{A} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{A} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right]$$

#### HEL [arXiv: 1310.5150]

Eq. (2.25)	Ref. [46]	Section 2.1
$g_{hgg}$	$c_{\alpha}\kappa_{Hgg}g_{Hgg}$	$g_H - rac{4ar c_g g_s^2 v}{m_W^2}$
$ ilde{g}_{hgg}$	$s_{lpha}\kappa_{Agg}g_{Agg}$	$-rac{4 ilde{c}_g g_s^2 v}{m_W^2}$
$g_{h\gamma\gamma}$	$c_{\alpha}\kappa_{H\gamma\gamma}g_{H\gamma\gamma}$	$a_H - rac{8gar{c}_\gamma s_W^2}{m_W}$
$\tilde{g}_{h\gamma\gamma}$	$s_{\alpha}\kappa_{A\gamma\gamma}g_{A\gamma\gamma}$	$-\frac{8g\tilde{c}_{\gamma}s_W^2}{m_W}$
$g^{(1)}_{hzz}$	$\frac{1}{\Lambda}c_{lpha}\kappa_{HZZ}$	$\frac{2g}{c_W^2 m_W} \left[ \bar{c}_{HB} s_W^2 - 4 \bar{c}_{\gamma} s_W^4 + c_W^2 \bar{c}_{HW} \right]$
$\tilde{g}_{hzz}$	$\frac{1}{\Lambda} s_{\alpha} \kappa_{AZZ}$	$\frac{2g}{c_W^2 m_W} \left[ \tilde{c}_{HB} s_W^2 - 4 \tilde{c}_\gamma s_W^4 + c_W^2 \tilde{c}_{HW} \right]$
$g^{(2)}_{\hbar z z}$	$\frac{1}{\Lambda}c_{\alpha}\kappa_{H\partial Z}$	$\frac{g}{c_W^2 m_W} \left[ (\bar{c}_{HW} + \bar{c}_W) c_W^2 + (\bar{c}_B + \bar{c}_{HB}) s_W^2 \right]$
$g^{(3)}_{hzz}$	$c_{\alpha}\kappa_{\mathrm{SM}}g_{HZZ}$	$\frac{gm_W}{c_W^2} \left[ 1 - \frac{1}{2} \bar{c}_H - 2 \bar{c}_T + 8 \bar{c}_\gamma \frac{s_W^4}{c_W^2} \right]$
$g^{(1)}_{\scriptscriptstyle haz}$	$c_{\alpha}\kappa_{HZ\gamma}g_{HZ\gamma}$	$\frac{gs_W}{c_W m_W} \left[ \bar{c}_{HW} - \bar{c}_{HB} + 8\bar{c}_{\gamma} s_W^2 \right]$
$\tilde{g}_{haz}$	$s_{lpha}\kappa_{\scriptscriptstyle AZ\gamma}g_{\scriptscriptstyle AZ\gamma}$	$\frac{gs_W}{c_W m_W} \left[ \tilde{c}_{HW} - \tilde{c}_{HB} + 8\tilde{c}_{\gamma} s_W^2 \right]$
$g^{(2)}_{haz}$	$\frac{1}{\Lambda}c_{\alpha}\kappa_{H\partial\gamma}$	$\frac{gs_W}{c_W m_W} \Big[ \bar{c}_{HW} - \bar{c}_{HB} - \bar{c}_B + \bar{c}_W \Big]$
$g_{hww}^{(1)}$	$\frac{1}{\Lambda}c_{\alpha}\kappa_{HWW}$	$\frac{2g}{m_W}\overline{c}_{HW}$
$ ilde{g}_{hww}$	$\frac{1}{\Lambda}s_{lpha}\kappa_{AWW}$	$\frac{2g}{m_W}\tilde{c}_{HW}$
$g^{(2)}_{hww}$	$\frac{1}{\Lambda}c_{\alpha}\kappa_{H\partial W}$	$\frac{g}{m_W} \left[ \bar{c}_W + \bar{c}_{HW} \right]$

Kentarou Mawatari (Vrije U. Brussel)

![](_page_31_Picture_0.jpeg)

![](_page_31_Picture_2.jpeg)

#### Mapping between the D6 and D5 operators

#### HC [arXiv: 1306.6464]

$$\begin{split} \mathcal{L}_{0}^{f} &= -\sum_{f=t,b,\tau} \bar{\psi}_{f} \left( c_{\alpha} \kappa_{\scriptscriptstyle Hff} g_{\scriptscriptstyle Hff} + i s_{\alpha} \kappa_{\scriptscriptstyle Aff} g_{\scriptscriptstyle Aff} \gamma_{5} \right) \psi_{f} X_{0} \\ \mathcal{L}_{0}^{V} &= \left\{ c_{\alpha} \kappa_{\scriptscriptstyle SM} \left[ \frac{1}{2} g_{\scriptscriptstyle HZZ} \, Z_{\mu} Z^{\mu} + g_{\scriptscriptstyle HWW} \, W_{\mu}^{+} W^{-\mu} \right] \right. \\ &- \frac{1}{4} \left[ c_{\alpha} \kappa_{\scriptscriptstyle H\gamma\gamma} g_{\scriptscriptstyle H\gamma\gamma} \, A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle A\gamma\gamma} g_{\scriptscriptstyle A\gamma\gamma} \, A_{\mu\nu} \widetilde{A}^{\mu\nu} \right] \\ &- \frac{1}{2} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HZ\gamma} g_{\scriptscriptstyle HZ\gamma} \, Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AZ\gamma} g_{\scriptscriptstyle AZ\gamma} \, Z_{\mu\nu} \widetilde{A}^{\mu\nu} \right] \\ &- \frac{1}{4} \left[ c_{\alpha} \kappa_{\scriptscriptstyle Hgg} g_{\scriptscriptstyle Hgg} \, G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AZ\gamma} g_{\scriptscriptstyle Agg} \, G_{\mu\nu}^{a} \widetilde{G}^{a,\mu\nu} \right] \\ &- \frac{1}{4} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HZZ} \, Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AZZ} \, Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right] \\ &- \frac{1}{4} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HZZ} \, Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AZZ} \, Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right] \\ &- \frac{1}{4} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HWW} \, W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} \, W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{A} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HWW} \, W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} \, W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{A} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HWW} \, W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} \, W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{A} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HWW} \, W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} \, W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{A} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HWW} \, W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} \, W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{A} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HWW} \, W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} \, W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{A} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HWW} \, W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} \, W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{A} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HWW} \, W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} \, W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{A} \left[ c_{\alpha} \kappa_{\scriptscriptstyle HWW} \, W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} \, W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \left\{ c_{\alpha} \kappa_{\scriptscriptstyle HWW} \, W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} \, W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \left\{ c_{\alpha} \kappa_{\scriptscriptstyle HWW} \, W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} \, W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \left\{ c_{\alpha} \kappa_{\scriptscriptstyle HWW} \, W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} \, W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu} \right] \\ &- \frac{1}{2} \left\{ c_{\alpha} \kappa_{\scriptscriptstyle HWW} \, W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\scriptscriptstyle AWW} \,$$

#### HEL [arXiv: 1310.5150]

Eq. (2.25)	Ref. [46]	Section 2.1
$g_{hgg}$	$c_{\alpha}\kappa_{Hgg}g_{Hgg}$	$g_H - rac{4ar c_g g_s^2 v}{m_W^2}$
$ ilde{g}_{hgg}$	$s_{lpha}\kappa_{Agg}g_{Agg}$	$-rac{4 ilde{c}_g g_s^2 v}{m_W^2}$
$g_{h\gamma\gamma}$	$c_{\alpha}\kappa_{H\gamma\gamma}g_{H\gamma\gamma}$	$a_H - rac{8gar{c}_\gamma s_W^2}{m_W}$
$\tilde{g}_{h\gamma\gamma}$	$s_{\alpha}\kappa_{A\gamma\gamma}g_{A\gamma\gamma}$	$-\frac{8g\tilde{c}_{\gamma}s_{W}^{2}}{28g\tilde{c}_{\gamma}s_{W}^{2}}$
$g^{(1)}_{hzz}$	$\frac{1}{\Lambda}c_{lpha}\kappa_{HZZ}$	$\frac{2g}{c_W^2 m_W} \left[ \bar{c}_{HB} s_W^2 - 4 \bar{c}_\gamma s_W^4 + c_W^2 \bar{c}_{HW} \right]^2$
$\tilde{g}_{hzz}$	$\frac{1}{\Lambda} s_{\alpha} \kappa_{AZZ}$	$rac{2g}{c_W^2 m_W} \left[ \widetilde{c}_{HB} \widetilde{s}_W - 4 c_\gamma \widetilde{s}_W^4 + c_W^2 \widetilde{c}_{HW}  ight]$
$g^{(2)}_{hzz}$	$\frac{1}{\Lambda}c_{\alpha}\kappa_{H\partial Z}$	$\frac{g}{c_W^2 m_W} \left[ (\bar{c}_{HW} + \bar{c}_W) c_W^2 + (\bar{c}_B + \bar{c}_{HB}) s_W^2 \right]$
$g^{(3)}_{hzz}$	$c_{\alpha}\kappa_{\mathrm{SM}}g_{HZZ}$	$\frac{gm_W}{c_W^2} \left[ 1 - \frac{1}{2} \bar{c}_H - 2 \bar{c}_T + 8 \bar{c}_\gamma \frac{s_W^4}{c_W^2} \right]$
$g^{(1)}_{\scriptscriptstyle haz}$	$c_{\alpha}\kappa_{HZ\gamma}g_{HZ\gamma}$	$\frac{gs_W}{c_W m_W} \left[ \bar{c}_{HW} - \bar{c}_{HB} + 8\bar{c}_{\gamma} s_W^2 \right]$
$\tilde{g}_{haz}$	$s_{lpha}\kappa_{\scriptscriptstyle AZ\gamma}g_{\scriptscriptstyle AZ\gamma}$	$\frac{gs_W}{c_W m_W} \left[ \tilde{c}_{HW} - \tilde{c}_{HB} + 8\tilde{c}_{\gamma} s_W^2 \right]$
$g^{(2)}_{haz}$	$\frac{1}{\Lambda}c_{\alpha}\kappa_{H\partial\gamma}$	$rac{gs_W}{c_W m_W} \Big[ ar{c}_{HW} - ar{c}_{HB} - ar{c}_B + ar{c}_W \Big]$
$g_{hww}^{(1)}$	$\frac{1}{\Lambda}c_{\alpha}\kappa_{HWW}$	$\frac{2g}{m_W}\overline{c}_{HW}$
$ ilde{g}_{hww}$	$\frac{1}{\Lambda}s_{lpha}\kappa_{AWW}$	$\frac{2g}{m_W}\tilde{c}_{HW}$
$g^{(2)}_{hww}$	$\frac{1}{\Lambda}c_{\alpha}\kappa_{H\partial W}$	$\frac{g}{m_W} \left[ \bar{c}_W + \bar{c}_{HW} \right]$

Kentarou Mawatari (Vrije U. Brussel)

![](_page_32_Picture_0.jpeg)

![](_page_32_Picture_2.jpeg)

#### Mapping between the D6 and D5 operators

HEL [arXiv: 1310.5150] HC [arXiv: 1306.6464]  $\mathcal{L}_0^f = -\sum \bar{\psi}_f (c_\alpha \kappa_{Hff} g_{Hff} + i s_\alpha \kappa_{Aff} g_{Aff} \gamma_5) \psi_f X_0$ Eq. (2.25) Ref. [46] Section 2.1  $g_H - \frac{4\bar{c}_g g_s^2 v}{m_W^2}$  $\mathcal{L}_{0}^{V} = \left\{ c_{\alpha} \kappa_{\rm SM} \left[ \frac{1}{2} g_{HZZ} \, Z_{\mu} Z^{\mu} + g_{HWW} \, W_{\mu}^{+} W^{-\mu} \right] \right.$  $c_{\alpha}\kappa_{Hgg}g_{Hgg}$  $g_{hgg}$  $-\frac{4\tilde{c}_g g_s^2 v}{m_W^2}$  $\tilde{g}_{hgg}$  $s_{\alpha}\kappa_{Agg}g_{Agg}$  $-\frac{1}{4} \left[ c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \widetilde{A}^{\mu\nu} \right]$  $a_H - \frac{8g\bar{c}_{\gamma}s_W^2}{m_W}$  $c_{\alpha}\kappa_{H\gamma\gamma}g_{H\gamma\gamma}$  $g_{h\gamma\gamma}$  $-\frac{8g\tilde{c}\gamma s_W^2}{2}$  $\tilde{g}_{h\gamma\gamma}$  $s_{\alpha}\kappa_{A\gamma\gamma}g_{A\gamma\gamma}$  $-\frac{1}{2} \left[ c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \widetilde{A}^{\mu\nu} \right]$  $\frac{1}{\Lambda}c_{\alpha}\kappa_{HZZ}$   $\left[\frac{2g}{c_{w}^{2}m_{W}}\left[\bar{c}_{HB}s_{W}^{2}-4\bar{c}_{\gamma}s_{W}^{4}+c_{W}^{2}\bar{c}_{HW}\right]\right]$  $g_{hzz}^{(1)}$  $-\frac{1}{4} \left[ c_{\alpha} \kappa_{Hgg} g_{Hgg} G^{a}_{\mu\nu} G^{a,\mu\nu} + s_{\alpha} \kappa_{Agg} g_{Agg} G^{a}_{\mu\nu} \widetilde{G}^{a,\mu\nu} \right]$  $\frac{2g}{c_W^2 m_W} \left[ \tilde{c}_{HB} \tilde{s}_W - 4 \tilde{c}_\gamma s_W^4 + c_W^2 \tilde{c}_{HW} \right]$  $\frac{1}{\Lambda}s_{\alpha}\kappa_{AZZ}$  $\tilde{g}_{hzz}$  $g^{(2)}_{hzz}$  $\frac{g}{c_{W}^2 m_W} \left[ (\bar{c}_{HW} + \bar{c}_W) c_W^2 + (\bar{c}_B + \bar{c}_{HB}) s_W^2 \right]$  $\frac{1}{\Lambda}c_{\alpha}\kappa_{H\partial Z}$  $-\frac{1}{4}\frac{1}{\Lambda}\left[c_{\alpha}\kappa_{HZZ}Z_{\mu\nu}Z^{\mu\nu}+s_{\alpha}\kappa_{AZZ}Z_{\mu\nu}\widetilde{Z}^{\mu\nu}\right]$  $g_{hzz}^{(3)}$  $\frac{gm_W}{c_W^2} \left[ 1 - \frac{1}{2} \bar{c}_H - 2 \bar{c}_T + 8 \bar{c}_\gamma \frac{s_W^4}{c_W^2} \right]$  $c_{\alpha}\kappa_{SM}g_{HZZ}$  $-\frac{1}{2}\frac{1}{\Lambda}\left[c_{\alpha}\kappa_{HWW}W^{+}_{\mu\nu}W^{-\mu\nu}+s_{\alpha}\kappa_{AWW}W^{+}_{\mu\nu}\widetilde{W}^{-\mu\nu}\right]$  $g_{haz}^{(1)}$  $\frac{gs_W}{c_W m_W} \left[ \bar{c}_{HW} - \bar{c}_{HB} + 8\bar{c}_{\gamma} s_W^2 \right]$  $c_{\alpha}\kappa_{HZ\gamma}g_{HZ\gamma}$  $-\frac{1}{\Lambda}c_{\alpha}[\kappa_{H\partial\gamma}Z_{\nu}\partial_{\mu} + (\kappa_{H\partial W}W] = \frac{1}{\kappa_{H\partial W}W} \begin{bmatrix} \bar{c}_{HW} - \bar{c}_{HB} - \bar{c}_{B} + \bar{c}_{W} \end{bmatrix}$   $+ (\kappa_{H\partial W}W] = \frac{1}{\kappa_{H\partial W}W} \begin{bmatrix} \bar{c}_{HW} - \bar{c}_{HB} - \bar{c}_{B} + \bar{c}_{W} \end{bmatrix}$   $= \frac{1}{\kappa_{H\partial W}W} = \frac{1}{\kappa_{H\partial W}W} = \frac{1}{\kappa_{H\partial W}W}$  $\tilde{c}_{HW} = \tilde{c}_{HB} - \tilde{c}_{HB} + 8\tilde{c}_{\gamma}s_W^2$  $V_{\mu\nu} = \partial_{\mu}V_{\nu} - \partial_{\nu}V_{\mu} \quad \left(V = A, Z, W^{\pm}\right), \quad V_{\mu\nu} = \frac{1}{2}\epsilon_{\mu\nu\rho\sigma}V^{\rho\sigma}$  $g^{(2)}_{hww}$  $\frac{1}{\Lambda}c_{\alpha}\kappa_{H\partial W}$   $\frac{g}{m_{W}}\left[\bar{c}_{W}+\bar{c}_{HW}\right]$  $G^a_{\mu\nu} = \partial_\mu G^a_\nu - \partial_\nu G^a_\mu + g_s f^{abc} G^b_\mu G^c_\nu,$ 

Kentarou Mawatari (Vrije U. Brussel)

![](_page_33_Picture_0.jpeg)

![](_page_33_Picture_1.jpeg)

#### Mass and angular distributions -- spin0

![](_page_33_Figure_3.jpeg)

#### Kentarou Mawatari (Vrije U. Brussel)

24 / 20

![](_page_34_Picture_0.jpeg)

![](_page_34_Picture_1.jpeg)

• The most general interactions at the lowest canonical dimension:

$$\mathcal{L}_{1}^{f} = \sum_{f=q,\ell} \bar{\psi}_{f} \gamma_{\mu} (\kappa_{f_{a}} a_{f} - \kappa_{f_{b}} b_{f} \gamma_{5}) \psi_{f} X_{1}^{\mu}$$

$$\mathcal{L}_{1}^{W} = i \kappa_{W_{1}} g_{WWZ} (W_{\mu\nu}^{+} W^{-\mu} - W_{\mu\nu}^{-} W^{+\mu}) X_{1}^{\nu} + i \kappa_{W_{2}} g_{WWZ} W_{\mu}^{+} W_{\nu}^{-} X_{1}^{\mu\nu}$$

$$- \kappa_{W_{3}} W_{\mu}^{+} W_{\nu}^{-} (\partial^{\mu} X_{1}^{\nu} + \partial^{\nu} X_{1}^{\mu})$$

$$+ i \kappa_{W_{4}} W_{\mu}^{+} W_{\nu}^{-} \widetilde{X}_{1}^{\mu\nu} - \kappa_{W_{5}} \epsilon_{\mu\nu\rho\sigma} [W^{+\mu} (\partial^{\rho} W^{-\nu}) - (\partial^{\rho} W^{+\mu}) W^{-\nu}] X_{1}^{\sigma}$$

$$\mathcal{L}_1^Z = -\kappa_{Z_1} Z_{\mu\nu} Z^{\mu} X_1^{\nu} - \kappa_{Z_3} X_1^{\mu} (\partial^{\nu} Z_{\mu}) Z_{\nu} - \kappa_{Z_5} \epsilon_{\mu\nu\rho\sigma} X_1^{\mu} Z^{\nu} (\partial^{\rho} Z^{\sigma}) Z_{\nu} - \kappa_{Z_5} \epsilon_{\mu\nu\rho\sigma} Z_{\mu\nu\rho\sigma} - \kappa_{Z_5} \epsilon_{\mu\nu\rho\sigma} Z_{\mu\nu\rho\sigma} - \kappa_{Z_5} \epsilon_{\mu\nu\rho\sigma} - \kappa_{Z_5} \epsilon_{\mu\nu\rho\sigma} Z_{\mu\nu\rho\sigma} - \kappa_{Z_5} \epsilon_{\mu\nu\rho\sigma} - \kappa_{Z_5} \epsilon_{\mu\nu\sigma} - \kappa_{Z_5} \epsilon_{\mu\nu\sigma} - \kappa_{Z_5} \epsilon_{$$

Parity conservation implies that

for 
$$X_1 - \kappa_{f_b} = \kappa_{V_4} = \kappa_{V_5} = 0$$

for X₁+  $\kappa_{f_a} = \kappa_{V_1} = \kappa_{V_2} = \kappa_{V_3} = 0$ 

![](_page_35_Picture_0.jpeg)

![](_page_35_Picture_1.jpeg)

#### Mass and angular distributions -- spin l

![](_page_35_Figure_3.jpeg)

![](_page_36_Picture_0.jpeg)

![](_page_36_Picture_1.jpeg)

 via the energy-momentum tensor of the SM fields, starting from D5:

$$\mathcal{L}_{2}^{f} = -\frac{1}{\Lambda} \sum_{f=q,\ell} \kappa_{f} T_{\mu\nu}^{f} X_{2}^{\mu\nu}$$
$$\mathcal{L}_{2}^{V} = -\frac{1}{\Lambda} \sum_{V=Z,W,\gamma,g} \kappa_{V} T_{\mu\nu}^{V} X_{2}^{\mu\nu}$$

Th

The E-M tensor for QED:

$$\begin{split} T^f_{\mu\nu} &= -g_{\mu\nu} \Big[ \bar{\psi}_f (i\gamma^\rho D_\rho - m_f) \psi_f - \frac{1}{2} \partial^\rho (\bar{\psi}_f i\gamma_\rho \psi_f) \Big] \\ &+ \Big[ \frac{1}{2} \bar{\psi}_f i\gamma_\mu D_\nu \psi_f - \frac{1}{4} \partial_\mu (\bar{\psi}_f i\gamma_\nu \psi_f) + (\mu \leftrightarrow \nu) \Big] \,, \\ T^\gamma_{\mu\nu} &= -g_{\mu\nu} \Big[ -\frac{1}{4} A^{\rho\sigma} A_{\rho\sigma} + \partial^\rho \partial^\sigma A_\sigma A_\rho + \frac{1}{2} (\partial^\rho A_\rho)^2 \Big] \\ &- A^{\ \rho}_\mu A_{\nu\rho} + \partial_\mu \partial^\rho A_\rho A_\nu + \partial_\nu \partial^\rho A_\rho A_\mu \,, \end{split}$$

![](_page_37_Picture_0.jpeg)

![](_page_37_Picture_1.jpeg)

#### Mass and angular distributions -- spin2

![](_page_37_Figure_3.jpeg)

![](_page_38_Figure_0.jpeg)

![](_page_39_Picture_0.jpeg)

![](_page_39_Picture_1.jpeg)

#### aMC@NLO vs. ME+PS

![](_page_39_Figure_3.jpeg)

Good agreement between the ME+PS and aMC@NLO predictions for most observables.

For spin0, the production and decay factorize, for spin I and 2 this does not happen and the full 2->4,5 matrix elements need to be used.

![](_page_40_Picture_0.jpeg)

![](_page_40_Picture_2.jpeg)

#### Higher order effects in QCD (I) inclusive production in pp $\rightarrow X(J^P)$

![](_page_40_Figure_4.jpeg)

![](_page_41_Picture_0.jpeg)

![](_page_41_Picture_2.jpeg)

#### Higher order effects in QCD (I) inclusive production in pp $\rightarrow X(J^P)$

![](_page_41_Figure_4.jpeg)

The matched sample is harder than aMC@NLO at large pT due to the extra 2 ME patrons in the matched sample.

![](_page_41_Figure_6.jpeg)

The different shapes are due to the different initial state.

![](_page_42_Picture_0.jpeg)

![](_page_42_Picture_2.jpeg)

#### Higher order effects in QCD (I) inclusive production in pp $\rightarrow X(J^P)$

![](_page_42_Figure_4.jpeg)

The matched sample is harder than aMC@NLO at large pT due to the extra 2 ME patrons in the matched sample.

![](_page_42_Figure_6.jpeg)

The different shapes are due to the different initial state.

excellent agreement between ME+PS and aMC@NLO

![](_page_43_Picture_0.jpeg)

Universiteit Brussel

# ./bin/mg5_aMC >import model HC_NLO >generate p p > x0 j j QCD=0[QCD] >launch

#### Mjj distributions

![](_page_43_Figure_4.jpeg)

- The mjj distributions are all very similar (except the scenario with the derivative operator.
- The QCD corrections tend to make the tagging jets softer.

![](_page_44_Picture_0.jpeg)

![](_page_44_Picture_1.jpeg)

#### pT distributions

![](_page_44_Figure_3.jpeg)

• The unitarity violating behavior of the HD interactions, especially HDder, clearly manifests itself.

![](_page_45_Picture_0.jpeg)

![](_page_45_Picture_1.jpeg)

![](_page_45_Figure_2.jpeg)

- The mjj cut effectively suppresses the central jet activity, especially for SM.
- The difference among the scenarios becomes more pronounced.
- NLO corrections cannot be described by an overall K factor, and also depends on the applied cuts.