(e)cattering Miplitudes ODOSITIVE RASSMANNIAN

Jacob L. Bourjaily
 Niels Bohr Institute

based on work in collaboration with
N. Arkani-Hamed, F. Cachazo, A. Goncharov, A. Postnikov, and J. Trnka
[arXiv:1212.5605], [arXiv:1212.6974]

Jacob L. Bourjaily
 Niels Bohr Institute

based on work in collaboration with
N. Arkani-Hamed, F. Cachazo, A. Goncharov, A. Postnikov, and J. Trnka
[arXiv:1212.5605], [arXiv:1212.6974]

Organization and Outline

(1) Spiritus Movens

- A Parable: Scattering Amplitudes in Quantum Chromodynamics

2 The On-Shell Analytic S-Matrix

- Basic Building Blocks of the S-Matrix: On-Shell Diagrams
- On-Shell, All-Loop Recursion Relations for (Planar) Amplitudes
- Combinatorial Classification of On-Shell Diagrams
(3) From On-Shell Physics to the (Positive) Grassmannian From the Bottom-Up:
- (Combinatorially) Constructing and Computing On-Shell Functions From the Top-Down:
- Grassmannian Geometry of (Generalized) Parke-Taylor 'Amplitudes'

4 Status of and Prospects for the On-Shell Analytic S-Matrix

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution" to the amplitude for $g g \rightarrow g g g g$.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution" to the amplitude for $g g \rightarrow g g g g$.

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution" to the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution" to the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution" to the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution" to the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution" to the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution" to the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- used $\mathcal{N}=2$ supersymmetry to relate it to a 'simpler' amplitude: $\mathcal{A}\left(g^{+}, g^{+}, \varphi^{+}, \varphi^{+}, \varphi^{-}, \varphi^{-}\right)$

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution" to the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- used $\mathcal{N}=2$ supersymmetry to relate it to a 'simpler' amplitude: $\mathcal{A}\left(g^{+}, g^{+}, \varphi^{+}, \varphi^{+}, \varphi^{-}, \varphi^{-}\right)$
- employed the world's best supercomputers

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution" to the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- used $\mathcal{N}=2$ supersymmetry to relate it to a 'simpler' amplitude: $\mathcal{A}\left(g^{+}, g^{+}, \varphi^{+}, \varphi^{+}, \varphi^{-}, \varphi^{-}\right)$
- employed the world's best supercomputers
- and the final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution" to the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- used $\mathcal{N}=2$ supersymmetry to relate it to a 'simpler' amplitude: $\mathcal{A}\left(g^{+}, g^{+}, \varphi^{+}, \varphi^{+}, \varphi^{-}, \varphi^{-}\right)$
- employed the world's best supercomputers
- and the final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution" to the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- used $\mathcal{N}=2$ supersymmetry to relate it to a 'simpler' amplitude: $\mathcal{A}\left(g^{+}, g^{+}, \varphi^{+}, \varphi^{+}, \varphi^{-}, \varphi^{-}\right)$
- employed the world's best supercomputers
- and the final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution" to the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- used $\mathcal{N}=2$ supersymmetry to relate it to a 'simpler' amplitude: $\mathcal{A}\left(g^{+}, g^{+}, \varphi^{+}, \varphi^{+}, \varphi^{-}, \varphi^{-}\right)$
- employed the world's best supercomputers
- and the final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Parke \& Taylor, Nucl. Phys. B269

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution" to the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- used $\mathcal{N}=2$ supersymmetry to relate it to a 'simpler' amplitude: $\mathcal{A}\left(g^{+}, g^{+}, \varphi^{+}, \varphi^{+}, \varphi^{-}, \varphi^{-}\right)$
- employed the world's best supercomputers
- and the final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution" to the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- used $\mathcal{N}=2$ supersymmetry to relate it to a 'simpler' amplitude: $\mathcal{A}\left(g^{+}, g^{+}, \varphi^{+}, \varphi^{+}, \varphi^{-}, \varphi^{-}\right)$
- employed the world's best supercomputers
- and the final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution" to
the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- used $\mathcal{N}=2$ supersymmetry to relate it to a 'simpler' amplitude: $\mathcal{A}\left(g^{+}, g^{+}, \varphi^{+}, \varphi^{+}, \varphi^{-}, \varphi^{-}\right)$
- employed the world's best supercomputers
- and the final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution" to the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- used $\mathcal{N}=2$ supersymmetry to relate it to a 'simpler' amplitude: $\mathcal{A}\left(g^{+}, g^{+}, \varphi^{+}, \varphi^{+}, \varphi^{-}, \varphi^{-}\right)$
- employed the world's best supercomputers
- and the final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution" to the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- used $\mathcal{N}=2$ supersymmetry to relate it to a 'simpler' amplitude: $\mathcal{A}\left(g^{+}, g^{+}, \varphi^{+}, \varphi^{+}, \varphi^{-}, \varphi^{-}\right)$
- employed the world's best supercomputers
- and the final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution" to the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- used $\mathcal{N}=2$ supersymmetry to relate it to a 'simpler' amplitude: $\mathcal{A}\left(g^{+}, g^{+}, \varphi^{+}, \varphi^{+}, \varphi^{-}, \varphi^{-}\right)$
- employed the world's best supercomputers
- and the final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Parke \& Taylor, Nucl. Phys. B269

420
of our calculation, the most powerfil test does not rely on the gauge symmetry, but on the appropriate permutation symmetries. The function $A_{0}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{3}, p_{8}\right)$ must be symmetric under arbintrary permutations of the momenta (p_{1}, p_{2}, p_{p}) and separately, $\left(p_{4}, p_{3}, p_{3}\right)$, whereas the fuaction $A_{2}\left(p_{1}, p_{3}, p_{3}, p_{4}, p_{5}, p_{6}\right)$ must be symmetric under the permutations of ($p_{1}, p_{3}, p_{3}, p_{d}$) and separately, (p_{3}, p_{0}). This test is extremely powerful, because the required permutation symmetries are hidden in
our supersymmetry relations, eqs. (1) and (3), and in the structure of amplitudes our supersymmerty relations, eqs. (i) and
involving different species of particles. Another, very important test relies on the absence of the double poles of the form $\left(s_{y}\right)^{-2}$ in the cross section, as required by general arguments based on the helicity conservation. Further, in the leading $\left(s_{y}\right)^{-1}$ pole approximation, the answer should reduce to the two goes to three cross section [3,4], convoluted with the appropriate Altarelli-Parisi probabilities [5]. Our result has succesfully passed both these numerical checks.
Details of the calculation, together with a full exposition of our techniques, will be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic
form for the answer, making our result not only an experimentalist's, but also a theorist's delight.

We thank Keith Ellis, Chris Quigs and especially, Estia Eichten for many useful discussions and encouragement during the course of this work. We acknowledge the hospitality of Aspen Center for Physics, where this work was being completed in a pleasant, strung-out atmosphere.

References

(1) R. Eichten, L Hinchlifte, K Lene and C. Quese. Rev. Mod. Ptos. 96 (1984) 559

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution" to the amplitude for $g g \rightarrow g g g g$.

- 220 Feynman diagrams, thousands of terms
- used $\mathcal{N}=2$ supersymmetry to relate it to a 'simpler' amplitude: $\mathcal{A}\left(g^{+}, g^{+}, \varphi^{+}, \varphi^{+}, \varphi^{-}, \varphi^{-}\right)$
- employed the world's best supercomputers
- and the final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Parke \& Taylor, Nucl. Phys. B269

420
of our calculation, the most powerfil test does not rely on the gauge symmetry, but on the appropriate permutation symmetries. The function $A_{0}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{3}, p_{0}\right)$ separately, (p_{4}, P_{9}, p_{4}), whereas the fuaction $A_{2}\left(p_{1}, P_{2}, P_{3}, p_{4}, P_{s}, P_{0}\right)$ must be symmetric under the permutations of $\left(p_{4}, p_{2}, p_{3}, p_{4}\right)$ and separately, $\left(p_{3}, p_{s}\right)$. This test is
m extremely powerful, because the required permutation symmetries are hidden in involving different species of particles. Another, very important test relies on the absence of the double poles of the form $\left(s_{0}\right)^{-2}$ in the cross section, as required by general arguments based on the helicity conservation. Further, in the leading $\left(s_{y}\right)^{-1}$ pole approximation, the answer should reduce to the two goes to three cross section $[3,4]$, convolumy Dutcesfully passed both these numerical checks.
Details of the calculation, together with a full exposition of our techniques, will
be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic be given in a forthcoming aricle. Furthermore, we hope to obtain a simple analytic
form for the answer, making our result not only an experimentalist's, but also a theorist's delight.
 discussions and encouragement during the course of this work. We acknowledge the hospitality of Aspen Center for Physics, where this work was being completed in a pleasant, strung-out atmosphere.

References

(1) R. Eichtes, L Hinchlifte, K Lane and C. Quse. Rev. Mod. Ptos. 86 (1984) 579

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.

Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution" to the amplitude for $g g \rightarrow g g g g$.

Parke \& Taylor, Nucl. Phys. B269

- 220 Feynman diagrams, thousands of terms
- used $\mathcal{N}=2$ supersymmetry to relate it to a 'simpler' amplitude: $\mathcal{A}\left(g^{+}, g^{+}, \varphi^{+}, \varphi^{+}, \varphi^{-}, \varphi^{-}\right)$
- employed the world's best supercomputers
- and the final formula: 8 pages long

Details of the calculation, together with a full exposition of our techniques, will be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic form for the answer, making our result not only an experimentalist's, but also a theorist's delight.

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL 56 (1986), 2459]

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL56 (1986), 2459] In modern notation, they suggested that:

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL 56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}\left(\ldots, a^{-}, \ldots, b^{-}, \ldots\right)
$$

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL 56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}\left(\ldots, a^{-}, \ldots, b^{-}, \ldots\right)=\frac{\langle a b\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{4}\left(\sum p_{a}^{\mu}\right)
$$

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}=\prod_{I=1}^{4}\left\{\bigoplus_{a<b}\langle a b\rangle \widetilde{\eta}_{a}^{I} \tilde{\eta}_{b}^{I}\right\} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{4}\left(\sum p_{a}^{\mu}\right)
$$

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}=\prod_{I=1}^{4}\left\{\bigoplus_{a<b}\langle a b\rangle \widetilde{\eta}_{a}^{I} \tilde{\eta}_{b}^{I}\right\} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{4}\left(\sum p_{a}^{\mu}\right)
$$

For massless external particles, we use spinor variables:

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}=\prod_{I=1}^{4}\left\{\bigoplus_{a<b}\langle a b\rangle \widetilde{\eta}_{a} \widetilde{\eta}_{b}^{I}\right\} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{4}\left(\sum p_{a}^{\mu}\right)
$$

For massless external particles, we use spinor variables:

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right)
$$

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}=\prod_{I=1}^{4}\left\{\bigoplus_{a<b}\langle a b\rangle \widetilde{\eta}_{a}^{I} \widetilde{\eta}_{b}^{I}\right\} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{4}\left(\sum p_{a}^{\mu}\right)
$$

For massless external particles, we use spinor variables:

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right)
$$

Notice that $p^{\mu} p_{\mu}=\operatorname{det}\left(p^{\alpha \dot{\alpha}}\right)$.

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}=\prod_{I=1}^{4}\left\{\bigoplus_{a<b}\langle a b\rangle \widetilde{\eta}_{a}^{I} \widetilde{\eta}_{b}^{I}\right\} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{4}\left(\sum p_{a}^{\mu}\right)
$$

For massless external particles, we use spinor variables:

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right)
$$

Notice that $p^{\mu} p_{\mu}=\operatorname{det}\left(p^{\alpha \dot{\alpha}}\right)$. For massless particles, $\operatorname{det}\left(p^{\alpha \dot{\alpha}}\right)=0$.

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}=\prod_{I=1}^{4}\left\{\bigoplus_{a<b}\langle a b\rangle \widetilde{\eta}_{a}^{I} \widetilde{\eta}_{b}^{I}\right\} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{4}\left(\sum p_{a}^{\mu}\right)
$$

For massless external particles, we use spinor variables:

$$
p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}
$$

Notice that $p^{\mu} p_{\mu}=\operatorname{det}\left(p^{\alpha \dot{\alpha}}\right)$. For massless particles, $\operatorname{det}\left(p^{\alpha \dot{\alpha}}\right)=0$.

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL 56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}=\prod_{I=1}^{4}\left\{\bigoplus_{a<b}\langle a b\rangle \widetilde{\eta}_{a}^{I} \widetilde{\eta}_{b}^{I}\right\} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{4}\left(\sum p_{a}^{\mu}\right)
$$

For massless external particles, we use spinor variables:

$$
\left.p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}} \Leftrightarrow{ }^{‘} a\right\rangle[a,
$$

Useful Lorentz-invariant scalars:

$$
\begin{gathered}
\langle a b\rangle \equiv\left|\begin{array}{cc}
\lambda_{a}^{1} & \lambda_{b}^{1} \\
\lambda_{a}^{2} & \lambda_{b}^{2}
\end{array}\right|, \quad[a b] \equiv\left|\begin{array}{cc}
\widetilde{\lambda}_{a}^{1} & \widetilde{\lambda}_{b}^{1} \\
\widetilde{\lambda}_{a}^{2} & \widetilde{\lambda}_{b}^{2}
\end{array}\right| \\
\left.\left.\left(p_{a}+p_{b}\right)^{2}=\langle a b\rangle[b a] \equiv s_{a b}, \quad\langle a|(b+\ldots+c) \mid d\right] \equiv\langle a|(b\rangle[b+\ldots+c\rangle[c) \mid d\right] .
\end{gathered}
$$

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}=\prod_{I=1}^{4}\left\{\bigoplus_{a<b}\langle a b\rangle \widetilde{\eta}_{a}^{I} \widetilde{\eta}_{b}^{I}\right\} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{4}\left(\sum p_{a}^{\mu}\right)
$$

For massless external particles, we use spinor variables:

$$
\left.p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}} \Leftrightarrow{ }^{\prime} a\right\rangle[a,
$$

Recasting momentum conservation:

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL 56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}=\prod_{I=1}^{4}\left\{\bigoplus_{a<b}\langle a b\rangle \widetilde{\eta}_{a}^{I} \widetilde{\eta}_{b}^{I}\right\} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{4}\left(\sum p_{a}^{\mu}\right)
$$

For massless external particles, we use spinor variables:

$$
\left.p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}} \Leftrightarrow{ }^{\prime} a\right\rangle[a,
$$

Recasting momentum conservation:

$$
\delta^{4}\left(\sum_{a=1}^{n} p_{a}^{\mu}\right)
$$

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL 56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}=\prod_{I=1}^{4}\left\{\bigoplus_{a<b}\langle a b\rangle \widetilde{\eta}_{a}^{I} \widetilde{\eta}_{b}^{I}\right\} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{4}\left(\sum p_{a}^{\mu}\right)
$$

For massless external particles, we use spinor variables:

$$
\left.p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}} \Leftrightarrow{ }^{\prime} a\right\rangle[a,
$$

Recasting momentum conservation:

$$
\delta^{4}\left(\sum_{a=1}^{n} p_{a}^{\mu}\right) \Rightarrow \delta^{4}\left(\sum_{a=1}^{n} \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}\right)
$$

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL 56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}=\prod_{I=1}^{4}\left\{\bigoplus_{a<b}\langle a b\rangle \widetilde{\eta}_{a}^{I} \widetilde{\eta}_{b}^{I}\right\} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

For massless external particles, we use spinor variables:

$$
\left.p_{a}^{\mu} \mapsto p_{a}^{\alpha \dot{\alpha}} \equiv p_{a}^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
p_{a}^{0}+p_{a}^{3} & p_{a}^{1}-i p_{a}^{2} \\
p_{a}^{1}+i p_{a}^{2} & p_{a}^{0}-p_{a}^{3}
\end{array}\right) \equiv \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}} \Leftrightarrow{ }^{\prime} a\right\rangle[a,
$$

Recasting momentum conservation:

$$
\delta^{4}\left(\sum_{a=1}^{n} p_{a}^{\mu}\right) \Rightarrow \delta^{4}\left(\sum_{a=1}^{n} \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}\right) \Rightarrow \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}=\prod_{I=1}^{4}\left\{\bigoplus_{a<b}\langle a b\rangle \widetilde{\eta}_{a}^{I} \widetilde{\eta}_{b}^{I}\right\} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

For massless external particles, we use spinor variables:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \cdots & \lambda_{n}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \cdots & \lambda_{n}^{2}
\end{array}\right) \text { and } \quad \widetilde{\lambda} \equiv\left(\begin{array}{ccccc}
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{i} & \cdots & \widetilde{\lambda}_{n}^{i} \\
\widetilde{\lambda}_{1}^{2} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{2} & \cdots & \widetilde{\lambda}_{n}^{2}
\end{array}\right)
$$

Recasting momentum conservation:

$$
\delta^{4}\left(\sum_{a=1}^{n} p_{a}^{\mu}\right) \Rightarrow \delta^{4}\left(\sum_{a=1}^{n} \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}\right) \Rightarrow \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}=\prod_{I=1}^{4}\left\{\bigoplus_{a<b}\langle a b\rangle \widetilde{\eta}_{a}^{I} \widetilde{\eta}_{b}^{I}\right\} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

For massless external particles, we use spinor variables:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \cdots & \lambda_{n}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \cdots & \lambda_{n}^{2}
\end{array}\right) \text { and } \quad \widetilde{\lambda} \equiv\left(\begin{array}{ccccc}
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{i} & \cdots & \widetilde{\lambda}_{n}^{i} \\
\widetilde{\lambda}_{1}^{2} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{2} & \cdots & \widetilde{\lambda}_{n}^{2}
\end{array}\right)
$$

Recasting momentum conservation:

$$
\delta^{4}\left(\sum_{a=1}^{n} p_{a}^{\mu}\right) \Rightarrow \delta^{4}\left(\sum_{a=1}^{n} \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}\right) \Rightarrow \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}=\prod_{I=1}^{4}\left\{\bigoplus_{a<b}\langle a b\rangle \widetilde{\eta}_{a}^{I} \widetilde{\eta}_{b}^{I}\right\} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

For massless external particles, we use spinor variables:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \cdots & \lambda_{n}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \cdots & \lambda_{n}^{2}
\end{array}\right) \text { and } \quad \widetilde{\lambda} \equiv\left(\begin{array}{ccccc}
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{i} & \cdots & \widetilde{\lambda}_{n}^{i} \\
\widetilde{\lambda}_{1}^{2} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{2} & \cdots & \widetilde{\lambda}_{n}^{2}
\end{array}\right)
$$

Recasting momentum conservation:

$$
\delta^{4}\left(\sum_{a=1}^{n} p_{a}^{\mu}\right) \Rightarrow \delta^{4}\left(\sum_{a=1}^{n} \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}\right) \Rightarrow \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}=\prod_{I=1}^{4}\left\{\bigoplus_{a<b}\langle a b\rangle \widetilde{\eta}_{a}^{I} \widetilde{\eta}_{b}^{I}\right\} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

For massless external particles, we use spinor variables:

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \cdots & \lambda_{n}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \cdots & \lambda_{n}^{2}
\end{array}\right) \text { and } \quad \widetilde{\lambda} \equiv\left(\begin{array}{ccccc}
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{i} & \cdots & \widetilde{\lambda}_{n}^{i} \\
\widetilde{\lambda}_{1}^{2} & \widetilde{\lambda}_{2}^{2} & \widetilde{\lambda}_{3}^{2} & \cdots & \widetilde{\lambda}_{n}^{2}
\end{array}\right)
$$

Recasting momentum conservation:

$$
\delta^{4}\left(\sum_{a=1}^{n} p_{a}^{\mu}\right) \Rightarrow \delta^{4}\left(\sum_{a=1}^{n} \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}\right) \Rightarrow \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

The Grassmannian $G(m, n)$:
The space of m-planes in n-dimensions

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL 56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}=\prod_{I=1}^{4}\left\{\bigoplus_{a<b}\langle a b\rangle \widetilde{\eta}_{a}^{I} \widetilde{\eta}_{b}^{I}\right\} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

For massless external particles, we use spinor variables:

$$
\lambda \equiv\left(\begin{array}{ccccc}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \cdots & \lambda_{n}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \cdots & \lambda_{n}^{2}
\end{array}\right) \in G(2, n)
$$

Recasting momentum conservation:

$$
\delta^{4}\left(\sum_{a=1}^{n} p_{a}^{\mu}\right) \Rightarrow \delta^{4}\left(\sum_{a=1}^{n} \lambda_{a}^{\alpha} \widetilde{\lambda_{a}^{\dot{\alpha}}}\right) \Rightarrow \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

The Grassmannian $G(m, n)$:
The space of m-planes in n-dimensions

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL 56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}=\prod_{I=1}^{4}\left\{\bigoplus_{a<b}\langle a b\rangle \widetilde{\eta}_{a}^{I} \widetilde{\eta}_{b}^{I}\right\} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

$$
\lambda \equiv\left(\begin{array}{ccccc}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \cdots & \lambda_{n}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \cdots & \lambda_{n}^{2}
\end{array}\right) \in G(2, n)
$$

The Grassmannian $G(m, n)$:

The space of m-planes in n-dimensions

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL 56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}=\prod_{I=1}^{4}\left\{\bigoplus_{a<b}\langle a b\rangle \widetilde{\eta}_{a}^{I} \tilde{\eta}_{b}^{I}\right\} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

$$
\lambda \equiv\left(\begin{array}{cc|ccc}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \cdots & \lambda_{n}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \cdots & \lambda_{n}^{2}
\end{array}\right) \in G(2, n)
$$

The Grassmannian $G(m, n)$:

The space of m-planes in n-dimensions

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL 56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}=\prod_{I=1}^{4}\left\{\bigoplus_{a<b}\langle a b\rangle \widetilde{\eta}_{a}^{I} \tilde{\eta}_{b}^{I}\right\} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

$$
\lambda \equiv\left(\begin{array}{l|ll|ll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \cdots & \lambda_{n}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \cdots & \lambda_{n}^{2}
\end{array}\right) \in G(2, n)
$$

The Grassmannian $G(m, n)$:

The space of m-planes in n-dimensions

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL 56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}=\prod_{I=1}^{4}\left\{\bigoplus_{a<b}\langle a b\rangle \widetilde{\eta}_{a}^{I} \tilde{\eta}_{b}^{I}\right\} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

$$
\lambda \equiv\left(\begin{array}{l|lll|l}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \cdots & \lambda_{n}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \cdots & \lambda_{n}^{2}
\end{array}\right) \in G(2, n)
$$

The Grassmannian $G(m, n)$:

The space of m-planes in n-dimensions

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL 56 (1986), 2459] In modern notation, they suggested that:

$$
\mathcal{A}_{n}^{(2)}=\prod_{I=1}^{4}\left\{\bigoplus_{a<b}\langle a b\rangle \widetilde{\eta}_{a}^{I} \widetilde{\eta}_{b}^{I}\right\} \frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})
$$

$$
\lambda \equiv\left(\begin{array}{ccccc}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \cdots & \lambda_{n}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \cdots & \lambda_{n}^{2}
\end{array}\right) \in G(2, n)
$$

The Grassmannian $G(m, n)$:

The space of m-planes in n-dimensions

Parke and Taylor's Heroic Computation: Six Months Later

Six months later, they had come upon a "guess", not only for their earlier amplitude, but an infinite number of amplitudes! [PRL 56 (1986), 2459] In modern notation, they suggested that:
$\mathcal{A}_{n}^{(2)}=\quad \delta^{2 \times 4}(\lambda \cdot \widetilde{\eta})$

$$
\frac{1}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda})
$$

$$
\lambda \equiv\left(\begin{array}{ccccc}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \cdots & \lambda_{n}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \cdots & \lambda_{n}^{2}
\end{array}\right) \in G(2, n)
$$

The Grassmannian $G(m, n)$:
The space of m-planes in n-dimensions

Parke and Taylor's Heroic Computation: Six Months Later

Parke and Taylor's Heroic Computation: Six Months Later

This raises two (perhaps whimsical) questions:

Parke and Taylor's Heroic Computation: Six Months Later

This raises two (perhaps whimsical) questions:

- Is there any formalism where this simplicity is immediate?

Parke and Taylor's Heroic Computation: Six Months Later

This raises two (perhaps whimsical) questions:

- Is there any formalism where this simplicity is immediate?
- Can the Parke-Taylor formula be generalized to all amplitudes?

Parke and Taylor's Heroic Computation: Six Months Later

This raises two (perhaps whimsical) questions:

- Is there any formalism where this simplicity is immediate?
- Can the Parke-Taylor formula be generalized to all amplitudes?

Parke and Taylor's Heroic Computation: Six Months Later

$$
\mathcal{A}_{n}^{(m)}{ }^{?} \quad \frac{\delta^{m \times 4}(\Lambda \cdot \tilde{\eta})}{\langle 1 \cdots m\rangle\langle 2 \cdots m+1\rangle \cdots\langle n \cdots m-1\rangle}{ }^{\delta^{m \times 2}(\Lambda \cdot \tilde{\lambda})}
$$

$$
\Lambda \equiv\left(\begin{array}{ccccc}
\Lambda_{1}^{1} & \Lambda_{2}^{1} & \Lambda_{3}^{1} & \cdots & \Lambda_{n}^{1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\Lambda_{1}^{m} & \Lambda_{2}^{m} & \Lambda_{3}^{m} & \cdots & \Lambda_{n}^{m}
\end{array}\right) \in G(m, n)
$$

This raises two (perhaps whimsical) questions:

- Is there any formalism where this simplicity is immediate?
- Can the Parke-Taylor formula be generalized to all amplitudes?

Parke and Taylor's Heroic Computation: Six Months Later

$$
\mathcal{A}_{n}^{(m) ?} \frac{\delta^{m \times 4}(C \cdot \tilde{\eta})}{\langle 1 \cdots m\rangle\langle 2 \cdots m+1\rangle \cdots\langle n \cdots m-1\rangle}{ }^{\delta^{m \times 2}}(C \cdot \tilde{\lambda})
$$

$$
C \equiv\left(\begin{array}{ccccc}
c_{1}^{1} & c_{2}^{1} & c_{3}^{1} & \cdots & c_{n}^{1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
c_{1}^{m} & c_{2}^{m} & c_{3}^{m} & \cdots & c_{n}^{m}
\end{array}\right) \in G(m, n)
$$

This raises two (perhaps whimsical) questions:

- Is there any formalism where this simplicity is immediate?
- Can the Parke-Taylor formula be generalized to all amplitudes?

Parke and Taylor's Heroic Computation: Six Months Later

$$
\mathcal{A}_{n}^{(m) ?} \frac{\delta^{m \times 4}(C \cdot \tilde{\eta})}{\langle 1 \cdots m\rangle\langle 2 \cdots m+1\rangle \cdots\langle n \cdots m-1\rangle}{ }^{\delta^{m \times 2}}(C \cdot \tilde{\lambda})
$$

$$
C \equiv\left(\begin{array}{ccccc}
c_{1}^{1} & c_{2}^{1} & c_{3}^{1} & \cdots & c_{n}^{1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
c_{1}^{m} & c_{2}^{m} & c_{3}^{m} & \cdots & c_{n}^{m}
\end{array}\right) \in G(m, n)
$$

This raises two (perhaps whimsical) questions:

- Is there any formalism where this simplicity is immediate?
- Can the Parke-Taylor formula be generalized to all amplitudes?

Parke and Taylor's Heroic Computation: Six Months Later

$$
\mathcal{A}_{n}^{(m) ?} \frac{\delta^{m \times 4}(C \cdot \tilde{\eta})}{\langle 1 \cdots m\rangle\langle 2 \cdots m+1\rangle \cdots\langle n \cdots m-1\rangle}{ }^{\delta^{m \times 2}}(C \cdot \tilde{\lambda})
$$

$$
C \equiv\left(\begin{array}{ccccc}
c_{1}^{1} & c_{2}^{1} & c_{3}^{1} & \cdots & c_{n}^{1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
c_{1}^{m} & c_{2}^{m} & c_{3}^{m} & \cdots & c_{n}^{m}
\end{array}\right) \in G(m, n)
$$

This raises two (perhaps whimsical) questions:

- Is there any formalism where this simplicity is immediate?
- Can the Parke-Taylor formula be generalized to all amplitudes?

An Introduction to On-Shell Diagrams

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes

An Introduction to On-Shell Diagrams

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes

An Introduction to On-Shell Diagrams

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)

An Introduction to On-Shell Diagrams

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)

An Introduction to On-Shell Diagrams

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)

An Introduction to On-Shell Diagrams

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)

Internal Particles:

An Introduction to On-Shell Diagrams

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)

Internal Particles: (generalized) unitarity dictates that we must evaluate all constituent amplitudes using the on-shell internal momentum $\lambda_{I} \widetilde{\lambda}_{I}$ (fixed by momentum-conservation),

An Introduction to On-Shell Diagrams

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)

Internal Particles: (generalized) unitarity dictates that we must evaluate all constituent amplitudes using the on-shell internal momentum $\lambda_{I} \widetilde{\lambda}_{I}$ (fixed by momentum-conservation), sum-over all possible helicities (h_{I})

An Introduction to On-Shell Diagrams

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)

Internal Particles: (generalized) unitarity dictates that we must evaluate all constituent amplitudes using the on-shell internal momentum $\lambda_{I} \widetilde{\lambda}_{I}$ (fixed by momentum-conservation), sum-over all possible helicities (h_{I}), and integrate-over each internal particle's on-shell phase-space:

An Introduction to On-Shell Diagrams

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)

Internal Particles: (generalized) unitarity dictates that we must evaluate all constituent amplitudes using the on-shell internal momentum $\lambda_{I} \widetilde{\lambda}_{I}$ (fixed by momentum-conservation), sum-over all possible helicities (h_{I}), and integrate-over each internal particle's on-shell phase-space:

$$
\sum_{h_{I}} \int \frac{d^{2} \lambda_{I} d^{2} \widetilde{\lambda}_{I}}{G L(1)}
$$

An Introduction to On-Shell Diagrams

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)

Internal Particles: (generalized) unitarity dictates that we must evaluate all constituent amplitudes using the on-shell internal momentum $\lambda_{I} \widetilde{\lambda}_{I}$ (fixed by momentum-conservation), sum-over all possible helicities (h_{I}), and integrate-over each internal particle's on-shell phase-space:

$$
\int d^{4} \widetilde{\eta}_{I} \int \frac{d^{2} \lambda_{I} d^{2} \widetilde{\lambda}_{I}}{G L(1)}
$$

An Introduction to On-Shell Diagrams

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)

Internal Particles: (generalized) unitarity dictates that we must evaluate all constituent amplitudes using the on-shell internal momentum $\lambda_{I} \widetilde{\lambda}_{I}$ (fixed by momentum-conservation), sum-over all possible helicities (h_{I}), and integrate-over each internal particle's on-shell phase-space:

$$
\int d^{4} \widetilde{\eta}_{I} \int \frac{d^{2} \lambda_{I} d^{2} \widetilde{\lambda}_{I}}{G L(1)}
$$

An Introduction to On-Shell Diagrams: Building Blocks

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof) Three-Particle Amplitudes: the basic building blocks

An Introduction to On-Shell Diagrams: Building Blocks

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)
Three-Particle Amplitudes: the basic building blocks
Amazingly, momentum-conservation and Poincarè-invariance uniquely fix the form of three-particle amplitudes

An Introduction to On-Shell Diagrams: Building Blocks

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)
Three-Particle Amplitudes: the basic building blocks
Amazingly, momentum-conservation and Poincarè-invariance uniquely fix the form of three-particle amplitudes (to all loop-orders!).

An Introduction to On-Shell Diagrams: Building Blocks

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)
Three-Particle Amplitudes: the basic building blocks
Amazingly, momentum-conservation and Poincarè-invariance uniquely fix the form of three-particle amplitudes (to all loop-orders!).
λ 's are generic

An Introduction to On-Shell Diagrams: Building Blocks

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)
Three-Particle Amplitudes: the basic building blocks
Amazingly, momentum-conservation and Poincarè-invariance uniquely fix the form of three-particle amplitudes (to all loop-orders!).
λ 's are generic

$$
\lambda \equiv\left(\begin{array}{lll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right)
$$

An Introduction to On-Shell Diagrams: Building Blocks

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)
Three-Particle Amplitudes: the basic building blocks
Amazingly, momentum-conservation and Poincarè-invariance uniquely fix the form of three-particle amplitudes (to all loop-orders!).
λ 's are generic

$$
\begin{aligned}
& \lambda \equiv\left(\begin{array}{lll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right) \\
& \lambda^{\perp} \equiv(\langle 23\rangle\langle 31\rangle\langle 12\rangle)
\end{aligned}
$$

An Introduction to On-Shell Diagrams: Building Blocks

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)
Three-Particle Amplitudes: the basic building blocks
Amazingly, momentum-conservation and Poincarè-invariance uniquely fix the form of three-particle amplitudes (to all loop-orders!).
λ 's are generic

$$
\begin{aligned}
\lambda & \equiv\left(\begin{array}{ccc}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right) \\
\tilde{\lambda} \subset \lambda^{\perp} & \equiv(\langle 23\rangle\langle 31\rangle\langle 12\rangle)
\end{aligned}
$$

An Introduction to On-Shell Diagrams: Building Blocks

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)
Three-Particle Amplitudes: the basic building blocks
Amazingly, momentum-conservation and Poincarè-invariance uniquely fix the form of three-particle amplitudes (to all loop-orders!).

λ 's are generic

$$
\lambda \equiv\left(\begin{array}{lll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right)
$$

$$
\widetilde{\lambda} \subset \lambda^{\perp} \equiv(\langle 23\rangle\langle 31\rangle\langle 12\rangle)
$$

An Introduction to On-Shell Diagrams: Building Blocks

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)
Three-Particle Amplitudes: the basic building blocks
Amazingly, momentum-conservation and Poincarè-invariance uniquely fix the form of three-particle amplitudes (to all loop-orders!).

λ 's are generic

$$
\lambda \equiv\left(\begin{array}{lll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right)
$$

$$
\widetilde{\lambda} \subset \lambda^{\perp} \equiv(\langle 23\rangle\langle 31\rangle\langle 12\rangle)
$$

An Introduction to On-Shell Diagrams: Building Blocks

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)
Three-Particle Amplitudes: the basic building blocks
Amazingly, momentum-conservation and Poincarè-invariance uniquely fix the form of three-particle amplitudes (to all loop-orders!).

λ 's are generic

$$
\begin{aligned}
& \lambda \equiv\left(\begin{array}{ccc}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right) \\
& \tilde{\lambda} \subset \lambda^{\perp} \equiv(\langle 23\rangle\langle 31\rangle\langle 12\rangle)
\end{aligned}
$$

$\widetilde{\lambda}$'s are generic

$$
\begin{aligned}
& \widetilde{\lambda} \equiv\left(\begin{array}{ccc}
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{i} \\
\widetilde{\lambda}_{1}^{2} & \widetilde{\lambda}_{2}^{2} & \widetilde{\lambda}_{3}^{2}
\end{array}\right) \\
& \lambda \subset \widetilde{\lambda}^{\perp} \equiv([23][31][12])
\end{aligned}
$$

An Introduction to On-Shell Diagrams: Building Blocks

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)
Three-Particle Amplitudes: the basic building blocks
Amazingly, momentum-conservation and Poincarè-invariance uniquely fix the form of three-particle amplitudes (to all loop-orders!).

λ 's are generic

$$
\lambda \equiv\left(\begin{array}{lll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right)
$$

$$
\tilde{\lambda} \subset \lambda^{\perp} \equiv(\langle 23\rangle\langle 31\rangle\langle 12\rangle)
$$

$\widetilde{\lambda}$'s are generic

$$
\begin{aligned}
& \widetilde{\lambda} \equiv\left(\begin{array}{ccc}
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{i} \\
\widetilde{\lambda}_{1}^{2} & \widetilde{\lambda}_{2}^{2} & \widetilde{\lambda}_{3}^{2}
\end{array}\right) \\
& \lambda \subset \widetilde{\lambda}^{\perp} \equiv\left(\left[\begin{array}{lll}
{[23]} & {[31]} & [12])
\end{array}\right.\right.
\end{aligned}
$$

An Introduction to On-Shell Diagrams: Building Blocks

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)
Three-Particle Amplitudes: the basic building blocks
Amazingly, momentum-conservation and Poincarè-invariance uniquely fix the form of three-particle amplitudes (to all loop-orders!).
λ 's are generic

$$
\lambda \equiv\left(\begin{array}{lll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right)
$$

$$
\widetilde{\lambda} \subset \lambda^{\perp} \equiv(\langle 23\rangle\langle 31\rangle\langle 12\rangle)
$$

$1=\frac{[23]^{4}}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})$
3^{+}
$\tilde{\lambda}$'s are generic

$$
\begin{aligned}
\widetilde{\lambda} & \equiv\left(\begin{array}{ccc}
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{\mathrm{i}} \\
\widetilde{\lambda}_{1}^{2} & \widetilde{\lambda}_{2}^{2} & \widetilde{\lambda}_{3}^{2}
\end{array}\right) \\
\lambda \subset \widetilde{\lambda}^{\perp} & \equiv\left(\begin{array}{llll}
{[23]} & {[31]} & [12])
\end{array}\right.
\end{aligned}
$$

An Introduction to On-Shell Diagrams: Building Blocks

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)
Three-Particle Amplitudes: the basic building blocks
Amazingly, momentum-conservation and Poincarè-invariance uniquely fix the form of three-particle amplitudes (to all loop-orders!).
λ 's are generic

$$
\lambda \equiv\left(\begin{array}{lll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right)
$$

$$
\widetilde{\lambda} \subset \lambda^{\perp} \equiv(\langle 23\rangle\langle 31\rangle\langle 12\rangle)
$$

$1=\frac{[23]^{4}}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})$
3^{+}
$\tilde{\lambda}$'s are generic

$$
\begin{aligned}
\widetilde{\lambda} & \equiv\left(\begin{array}{ccc}
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{\mathrm{i}} \\
\widetilde{\lambda}_{1}^{2} & \widetilde{\lambda}_{2}^{2} & \widetilde{\lambda}_{3}^{2}
\end{array}\right) \\
\lambda \subset \widetilde{\lambda}^{\perp} & \equiv\left(\begin{array}{llll}
{[23]} & {[31]} & [12])
\end{array}\right.
\end{aligned}
$$

An Introduction to On-Shell Diagrams: Building Blocks

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)
Three-Particle Amplitudes: the basic building blocks
Amazingly, momentum-conservation and Poincarè-invariance uniquely fix the form of three-particle amplitudes (to all loop-orders!).

λ 's are generic

$$
\begin{aligned}
\lambda & \equiv\left(\begin{array}{ccc}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right) \\
\tilde{\lambda} \subset \lambda^{\perp} & \equiv(\langle 23\rangle\langle 31\rangle\langle 12\rangle)
\end{aligned}
$$

$1 \rightarrow-\frac{[23]^{4}}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})$
3
$\widetilde{\lambda}$'s are generic

$$
\begin{aligned}
\widetilde{\lambda} & \equiv\left(\begin{array}{ccc}
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{i} \\
\widetilde{\lambda}_{1}^{2} & \widetilde{\lambda}_{2}^{2} & \widetilde{\lambda}_{3}^{2}
\end{array}\right) \\
\lambda \subset \widetilde{\lambda}^{\perp} \equiv([23][31] & {[12]) }
\end{aligned}
$$

An Introduction to On-Shell Diagrams: Building Blocks

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)
Three-Particle Amplitudes: the basic building blocks
Amazingly, momentum-conservation and Poincarè-invariance uniquely fix the form of three-particle amplitudes (to all loop-orders!).

λ 's are generic

$$
\begin{aligned}
\lambda & \equiv\left(\begin{array}{ccc}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right) \\
\tilde{\lambda} \subset \lambda^{\perp} & \equiv(\langle 23\rangle\langle 31\rangle\langle 12\rangle)
\end{aligned}
$$

$1 \rightarrow-\frac{[23]^{4}}{[12][23][31]} \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})$
3
$\widetilde{\lambda}$'s are generic

$$
\begin{aligned}
\widetilde{\lambda} & \equiv\left(\begin{array}{ccc}
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{i} \\
\widetilde{\lambda}_{1}^{2} & \widetilde{\lambda}_{2}^{2} & \widetilde{\lambda}_{3}^{2}
\end{array}\right) \\
\lambda \subset \widetilde{\lambda}^{\perp} \equiv([23][31] & {[12]) }
\end{aligned}
$$

An Introduction to On-Shell Diagrams: Building Blocks

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)
Three-Particle Amplitudes: the basic building blocks
Amazingly, momentum-conservation and Poincarè-invariance uniquely fix the form of three-particle amplitudes (to all loop-orders!).

λ 's are generic

$$
\lambda \equiv\left(\begin{array}{lll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right)
$$

$$
\widetilde{\lambda} \subset \lambda^{\perp} \equiv(\langle 23\rangle\langle 31\rangle\langle 12\rangle)
$$

$\widetilde{\lambda}$'s are generic

$$
\begin{aligned}
& \widetilde{\lambda} \equiv\left(\begin{array}{ccc}
\widetilde{\lambda}_{1}^{i} & \widetilde{\lambda}_{2}^{i} & \widetilde{\lambda}_{3}^{i} \\
\widetilde{\lambda}_{1}^{2} & \widetilde{\lambda}_{2}^{2} & \widetilde{\lambda}_{3}^{2}
\end{array}\right) \\
& \lambda \subset \widetilde{\lambda}^{\perp} \equiv\left(\begin{array}{llll}
{[23]} & {[31]} & [12])
\end{array}\right.
\end{aligned}
$$

An Introduction to On-Shell Diagrams: Building Blocks

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)
Three-Particle Amplitudes: the basic building blocks
Amazingly, momentum-conservation and Poincarè-invariance uniquely fix the form of three-particle amplitudes (to all loop-orders!).

λ 's are generic

$$
\begin{aligned}
\lambda & \equiv\left(\begin{array}{ccc}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right) \\
\tilde{\lambda} \subset \lambda^{\perp} & \equiv(\langle 23\rangle\langle 31\rangle\langle 12\rangle)
\end{aligned}
$$

$\tilde{\lambda}$'s are generic

$$
\begin{aligned}
\widetilde{\lambda} & \equiv\left(\begin{array}{ccc}
\widetilde{\lambda}_{1}^{\mathrm{i}} & \widetilde{\lambda}_{2}^{\mathrm{i}} & \widetilde{\lambda}_{3}^{\mathrm{i}} \\
\widetilde{\lambda}_{1}^{2} & \widetilde{\lambda}_{2}^{2} & \widetilde{\lambda}_{3}^{2}
\end{array}\right) \\
\lambda \subset \widetilde{\lambda}^{\perp} & \equiv\left(\left[\begin{array}{llll}
{[23]} & {[31]} & [12])
\end{array}\right.\right.
\end{aligned}
$$

An Introduction to On-Shell Diagrams: Building Blocks

Forbidding any reference to gauge-redundancies or virtual particles, we are led to consider scattering-amplitudes (and amalgamations thereof)
Three-Particle Amplitudes: the basic building blocks
Amazingly, momentum-conservation and Poincarè-invariance uniquely fix the form of three-particle amplitudes (to all loop-orders!).

λ 's are generic

$$
\begin{aligned}
\lambda & \equiv\left(\begin{array}{ccc}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right) \\
\tilde{\lambda} \subset \lambda^{\perp} & \equiv(\langle 23\rangle\langle 31\rangle\langle 12\rangle)
\end{aligned}
$$

$\tilde{\lambda}$'s are generic

$$
\begin{aligned}
\widetilde{\lambda} & \equiv\left(\begin{array}{ccc}
\widetilde{\lambda}_{1}^{\mathrm{i}} & \widetilde{\lambda}_{2}^{\mathrm{i}} & \widetilde{\lambda}_{3}^{\mathrm{i}} \\
\widetilde{\lambda}_{1}^{2} & \widetilde{\lambda}_{2}^{2} & \widetilde{\lambda}_{3}^{2}
\end{array}\right) \\
\lambda \subset \widetilde{\lambda}^{\perp} & \equiv\left(\left[\begin{array}{llll}
{[23]} & {[31]} & [12])
\end{array}\right.\right.
\end{aligned}
$$

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity-e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity-e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity-e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity-e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity-e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity-e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity-e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity-e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity-e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity-e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity-e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity-e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity-e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity-e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity-e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity-e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity-e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity-e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

${ }^{\circ}>0$

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

An Introduction to On-Shell Diagrams: Building Blocks

An "on-shell diagram" is anything obtained by amalgamating the basic three-particle amplitudes, $\mathcal{A}_{3}^{(1)}$ and $\mathcal{A}_{3}^{(2)}$, according to unitarity—e.g.,

Building-Up On-Shell Diagrams with "BCFW Bridges"

Very complex on-shell diagrams can be constructed by successively adding "BCFW bridges" to diagrams

Building-Up On-Shell Diagrams with "BCFW Bridges"

Very complex on-shell diagrams can be constructed by successively adding "BCFW bridges" to diagrams (an extremely useful tool!):

Building-Up On-Shell Diagrams with "BCFW Bridges"

Very complex on-shell diagrams can be constructed by successively adding "BCFW bridges" to diagrams (an extremely useful tool!):

Building-Up On-Shell Diagrams with "BCFW Bridges"

Very complex on-shell diagrams can be constructed by successively adding "BCFW bridges" to diagrams (an extremely useful tool!):

Building-Up On-Shell Diagrams with "BCFW Bridges"

Very complex on-shell diagrams can be constructed by successively adding "BCFW bridges" to diagrams (an extremely useful tool!):

Building-Up On-Shell Diagrams with "BCFW Bridges"

Very complex on-shell diagrams can be constructed by successively adding "BCFW bridges" to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b} flowing into the diagram f_{0} according to:

Building-Up On-Shell Diagrams with "BCFW Bridges"

Very complex on-shell diagrams can be constructed by successively adding "BCFW bridges" to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b} flowing into the diagram f_{0} according to:

Building-Up On-Shell Diagrams with "BCFW Bridges"

Very complex on-shell diagrams can be constructed by successively adding "BCFW bridges" to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b} flowing into the diagram f_{0} according to:

$$
\lambda_{a} \widetilde{\lambda}_{a} \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}}=\lambda_{a} \widetilde{\lambda}_{a}-\lambda_{I} \widetilde{\lambda}_{I} \quad \text { and } \quad \lambda_{b} \widetilde{\lambda}_{b} \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}}=\lambda_{b} \widetilde{\lambda}_{b}+\lambda_{I} \widetilde{\lambda}_{I}
$$

Building-Up On-Shell Diagrams with "BCFW Bridges"

Very complex on-shell diagrams can be constructed by successively adding "BCFW bridges" to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b} flowing into the diagram f_{0} according to:

$$
\lambda_{a} \widetilde{\lambda}_{a} \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}}=\lambda_{a} \widetilde{\lambda}_{a}-\lambda_{I} \widetilde{\lambda}_{I} \quad \text { and } \quad \lambda_{b} \widetilde{\lambda}_{b} \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}}=\lambda_{b} \widetilde{\lambda}_{b}+\lambda_{I} \widetilde{\lambda}_{I}
$$

Building-Up On-Shell Diagrams with "BCFW Bridges"

Very complex on-shell diagrams can be constructed by successively adding "BCFW bridges" to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b} flowing into the diagram f_{0} according to:

$$
\lambda_{a} \widetilde{\lambda}_{a} \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}}=\lambda_{a} \widetilde{\lambda}_{a}-\alpha \lambda_{a} \widetilde{\lambda}_{I} \quad \text { and } \quad \lambda_{b} \widetilde{\lambda}_{b} \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}}=\lambda_{b} \widetilde{\lambda}_{b}+\alpha \lambda_{a} \widetilde{\lambda}_{I}
$$

Building-Up On-Shell Diagrams with "BCFW Bridges"

Very complex on-shell diagrams can be constructed by successively adding "BCFW bridges" to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b} flowing into the diagram f_{0} according to:

$$
\lambda_{a} \widetilde{\lambda}_{a} \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}}=\lambda_{a} \widetilde{\lambda}_{a}-\alpha \lambda_{a} \widetilde{\lambda}_{b} \quad \text { and } \quad \lambda_{b} \widetilde{\lambda}_{b} \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}}=\lambda_{b} \widetilde{\lambda}_{b}+\alpha \lambda_{a} \widetilde{\lambda}_{b}
$$

Building-Up On-Shell Diagrams with "BCFW Bridges"

Very complex on-shell diagrams can be constructed by successively adding "BCFW bridges" to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b} flowing into the diagram f_{0} according to:

$$
\lambda_{a} \widetilde{\lambda}_{a} \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}}=\lambda_{a}\left(\widetilde{\lambda}_{a}-\alpha \widetilde{\lambda}_{b}\right) \quad \text { and } \quad \lambda_{b} \widetilde{\lambda}_{b} \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}}=\lambda_{b} \widetilde{\lambda}_{b}+\alpha \lambda_{a} \widetilde{\lambda}_{b},
$$

Building-Up On-Shell Diagrams with "BCFW Bridges"

Very complex on-shell diagrams can be constructed by successively adding "BCFW bridges" to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b} flowing into the diagram f_{0} according to:

$$
\lambda_{a} \widetilde{\lambda}_{a} \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}}=\lambda_{a}\left(\widetilde{\lambda}_{a}-\alpha \widetilde{\lambda}_{b}\right) \quad \text { and } \quad \lambda_{b} \widetilde{\lambda}_{b} \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}}=\left(\lambda_{b}+\alpha \lambda_{a}\right) \widetilde{\lambda}_{b},
$$

Building-Up On-Shell Diagrams with "BCFW Bridges"

Very complex on-shell diagrams can be constructed by successively adding "BCFW bridges" to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b} flowing into the diagram f_{0} according to:

$$
\lambda_{a} \widetilde{\lambda}_{a} \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}}=\lambda_{a}\left(\widetilde{\lambda}_{a}-\alpha \widetilde{\lambda}_{b}\right) \quad \text { and } \quad \lambda_{b} \widetilde{\lambda}_{b} \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}}=\left(\lambda_{b}+\alpha \lambda_{a}\right) \widetilde{\lambda}_{b}
$$ and introduces a new parameter α, in terms of which we may write:

Building-Up On-Shell Diagrams with "BCFW Bridges"

Very complex on-shell diagrams can be constructed by successively adding "BCFW bridges" to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b} flowing into the diagram f_{0} according to:

$$
\lambda_{a} \widetilde{\lambda}_{a} \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}}=\lambda_{a}\left(\widetilde{\lambda}_{a}-\alpha \widetilde{\lambda}_{b}\right) \quad \text { and } \quad \lambda_{b} \widetilde{\lambda}_{b} \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}}=\left(\lambda_{b}+\alpha \lambda_{a}\right) \widetilde{\lambda}_{b}
$$

and introduces a new parameter α, in terms of which we may write:

$$
f(\ldots, a, b, \ldots)=\frac{d \alpha}{\alpha} f_{0}(\ldots, \widehat{a}, \widehat{b}, \ldots)
$$

Building-Up On-Shell Diagrams with "BCFW Bridges"

Very complex on-shell diagrams can be constructed by successively adding "BCFW bridges" to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b} flowing into the diagram f_{0} according to:

$$
\lambda_{a} \widetilde{\lambda}_{a} \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}}=\lambda_{a}\left(\widetilde{\lambda}_{a}-\alpha \widetilde{\lambda}_{b}\right) \quad \text { and } \quad \lambda_{b} \widetilde{\lambda}_{b} \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}}=\left(\lambda_{b}+\alpha \lambda_{a}\right) \widetilde{\lambda}_{b}
$$

and introduces a new parameter α, in terms of which we may write:

$$
f(\ldots, a, b, \ldots)=\frac{d \alpha}{\alpha} f_{0}(\ldots, \widehat{a}, \widehat{b}, \ldots)
$$

Building-Up On-Shell Diagrams with "BCFW Bridges"

Very complex on-shell diagrams can be constructed by successively adding "BCFW bridges" to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta p_{a} and p_{b} flowing into the diagram f_{0} according to:

$$
\lambda_{a} \widetilde{\lambda}_{a} \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}}=\lambda_{a}\left(\widetilde{\lambda}_{a}-\alpha \widetilde{\lambda}_{b}\right) \quad \text { and } \quad \lambda_{b} \widetilde{\lambda}_{b} \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}}=\left(\lambda_{b}+\alpha \lambda_{a}\right) \widetilde{\lambda}_{b}
$$

and introduces a new parameter α, in terms of which we may write:

$$
f(\ldots, a, b, \ldots)=\frac{d \alpha}{\alpha} f_{0}(\ldots, \widehat{a}, \widehat{b}, \ldots)
$$

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus)

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus)

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus)

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin-these come in two types:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin-these come in two types: factorization-channels

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin-these come in two types: factorization-channels and forward-limits

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin-these come in two types: factorization-channels and forward-limits

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full n-particle scattering amplitude the undeformed amplitude \mathcal{A}_{n} is recovered as the residue about $\alpha=0$:

$$
\mathcal{A}_{n}=\widehat{\mathcal{A}}_{n}(\alpha \rightarrow 0) \propto \oint_{\alpha=0} \frac{d \alpha}{\alpha} \widehat{\mathcal{A}}_{n}(\alpha)
$$

We can use Cauchy's theorem to trade the residue about $\alpha=0$ for (minus) the sum of residues away from the origin - these come in two types: factorization-channels and forward-limits

The Analytic Boot-Strap: All-Loop Recursion Relations

The Analytic Boot-Strap: All-Loop Recursion Relations

Diagrams are characterized by ' m '-the number of "minus-helicity" gluons:

The Analytic Boot-Strap: All-Loop Recursion Relations

Diagrams are characterized by ' m '-the number of "minus-helicity" gluons:

$$
m \equiv 2 n_{B}+n_{W}-n_{I} .
$$

The Analytic Boot-Strap: All-Loop Recursion Relations

Diagrams are characterized by ' m '-the number of "minus-helicity" gluons:

$$
m \equiv 2 n_{B}+n_{W}-n_{I} .
$$

For the bridge terms, we have:

$$
m_{L}+m_{R}=m+1
$$

The Analytic Boot-Strap: All-Loop Recursion Relations

Diagrams are characterized by ' m '-the number of "minus-helicity" gluons:

$$
m \equiv 2 n_{B}+n_{W}-n_{I} .
$$

For the bridge terms, we have:

$$
m_{L}+m_{R}=m+1
$$

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy':

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$!

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

$$
\mathcal{A}_{4}^{(2)}=
$$

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

$\mathcal{A}_{5}^{(2)}=$

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! The only (non-vanishing) contribution to $\mathcal{A}_{n}^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \otimes \mathcal{A}_{3}^{(1)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:
$\mathcal{A}_{6}^{(3)}=$

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae'
- on-shell diagrams can often be related in surprising ways

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae'
- on-shell diagrams can often be related in surprising ways

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae’
- on-shell diagrams can often be related in surprising ways

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae'
- on-shell diagrams can often be related in surprising ways

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae’
- on-shell diagrams can often be related in surprising ways

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae'
- on-shell diagrams can often be related in surprising ways

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae’
- on-shell diagrams can often be related in surprising ways

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae'
- on-shell diagrams can often be related in surprising ways

How can we characterize and compute on-shell diagrams?

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible 'fantasy': it directly gives the Parke-Taylor formula for all amplitudes with $m=2, \mathcal{A}_{n}^{(2)}$! And it generates very concise formulae for all other amplitudes-e.g. $\mathcal{A}_{6}^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae'
- on-shell diagrams can often be related in surprising ways

How can we characterize and compute on-shell diagrams?

Combinatorial Characterization of On-Shell Diagrams

On-shell diagrams can be altered without changing their associated functions

Combinatorial Characterization of On-Shell Diagrams

On-shell diagrams can be altered without changing their associated functions

- chains of equivalent three-particle vertices can be arbitrarily connected

Combinatorial Characterization of On-Shell Diagrams

On-shell diagrams can be altered without changing their associated functions

- chains of equivalent three-particle vertices can be arbitrarily connected

Combinatorial Characterization of On-Shell Diagrams

On-shell diagrams can be altered without changing their associated functions

- chains of equivalent three-particle vertices can be arbitrarily connected

Combinatorial Characterization of On-Shell Diagrams

On-shell diagrams can be altered without changing their associated functions

- chains of equivalent three-particle vertices can be arbitrarily connected

Combinatorial Characterization of On-Shell Diagrams

On-shell diagrams can be altered without changing their associated functions

- chains of equivalent three-particle vertices can be arbitrarily connected
- any four-particle 'square' can be drawn in its two equivalent ways

Combinatorial Characterization of On-Shell Diagrams

On-shell diagrams can be altered without changing their associated functions

- chains of equivalent three-particle vertices can be arbitrarily connected
- any four-particle 'square' can be drawn in its two equivalent ways

Combinatorial Characterization of On-Shell Diagrams

On-shell diagrams can be altered without changing their associated functions

- chains of equivalent three-particle vertices can be arbitrarily connected
- any four-particle 'square' can be drawn in its two equivalent ways

Combinatorial Characterization of On-Shell Diagrams

On-shell diagrams can be altered without changing their associated functions

- chains of equivalent three-particle vertices can be arbitrarily connected
- any four-particle 'square' can be drawn in its two equivalent ways

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

The On-Shell Analytic S-Matrix

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

The On-Shell Analytic S-Matrix

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Let $\sigma(a)$ denote where path terminates.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths':
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Let $\sigma(a)$ denote where path terminates.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Let $\sigma(a)$ denote where path terminates.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Let $\sigma(a)$ denote where path terminates.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Let $\sigma(a)$ denote where path terminates.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Let $\sigma(a)$ denote where path terminates.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'
Starting from any leg a, turn:

- left at each white vertex;
- right at each blue vertex.

Let $\sigma(a)$ denote where path terminates.

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'.
Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'.
Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'.
Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'.
Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

left-right permutation σ

$$
\sigma:\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
& & & & &
\end{array}\right)
$$

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'.
Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

left-right permutation σ

$$
\sigma:\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & & & & &
\end{array}\right)
$$

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'.
Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

left-right permutation σ

$$
\sigma:\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & \downarrow & & & \\
3 & 5 & & & &
\end{array}\right)
$$

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'.
Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

left-right permutation σ

$$
\sigma:\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & \downarrow & \downarrow & & & \\
3 & 5 & 6 & & &
\end{array}\right)
$$

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'.
Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

left-right permutation σ

$$
\sigma:\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & \downarrow & \downarrow & \downarrow & & \\
3 & 5 & 6 & \mathbf{1} & &
\end{array}\right)
$$

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'.
Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

left-right permutation σ

$$
\sigma:\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
3 & 5 & 6 & \mathbf{1} & \mathbf{2} &
\end{array}\right)
$$

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'.
Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

left-right permutation σ

$$
\sigma:\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
3 & 5 & 6 & \mathbf{1} & \mathbf{2} & \mathbf{4}
\end{array}\right)
$$

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'.
Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

left-right permutation σ

$$
\sigma:\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
3 & 5 & 6 & \mathbf{1} & \mathbf{2} & \mathbf{4}
\end{array}\right)
$$

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'.
Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

left-right permutation σ

$$
\sigma:\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
3 & 5 & 6 & \mathbf{1} & \mathbf{2} & \mathbf{4}
\end{array}\right)
$$

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'.
Recall that different contributions to $\mathcal{A}_{6}^{(3)}$ were related by rotation:

left-right permutation σ

$$
\sigma:\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
3 & 5 & 6 & 7 & 8 & 10
\end{array}\right)
$$

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant.

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'-also known as 'bubble deletion':

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'-also known as 'bubble deletion':

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'-also known as 'bubble deletion':

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction' - also known as 'bubble deletion':
Bubble-deletion does not, however, relate 'identical' on-shell diagrams:

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction' - also known as 'bubble deletion':
Bubble-deletion does not, however, relate 'identical' on-shell diagrams:

- it leaves behind an overall factor of $d \alpha / \alpha$ in the on-shell function

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction' - also known as 'bubble deletion': Bubble-deletion does not, however, relate 'identical' on-shell diagrams:

- it leaves behind an overall factor of $d \alpha / \alpha$ in the on-shell function
- and it alters the corresponding left-right path permutation

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'-also known as 'bubble deletion': Bubble-deletion does not, however, relate 'identical' on-shell diagrams:

- it leaves behind an overall factor of $d \alpha / \alpha$ in the on-shell function
- and it alters the corresponding left-right path permutation

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'-also known as 'bubble deletion': Bubble-deletion does not, however, relate 'identical' on-shell diagrams:

- it leaves behind an overall factor of $d \alpha / \alpha$ in the on-shell function
- and it alters the corresponding left-right path permutation

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'-also known as 'bubble deletion':
Bubble-deletion does not, however, relate 'identical' on-shell diagrams:

- it leaves behind an overall factor of $d \alpha / \alpha$ in the on-shell function
- and it alters the corresponding left-right path permutation

Such factors of $d \alpha / \alpha$ arising from bubble deletion encode loop integrands!

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching ‘BCFW bridges’ can lead to very rich on-shell diagrams.

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching ‘BCFW bridges’ can lead to very rich on-shell diagrams. Conveniently, adding a BCFW bridge acts very nicely on permutations:

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching ‘BCFW bridges’ can lead to very rich on-shell diagrams. Conveniently, adding a BCFW bridge acts very nicely on permutations:

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching ‘BCFW bridges’ can lead to very rich on-shell diagrams. Conveniently, adding a BCFW bridge acts very nicely on permutations:

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching ‘BCFW bridges' can lead to very rich on-shell diagrams. Conveniently, adding a BCFW bridge acts very nicely on permutations:

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching 'BCFW bridges' can lead to very rich on-shell diagrams. Conveniently, adding a BCFW bridge acts very nicely on permutations:

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching 'BCFW bridges’ can lead to very rich on-shell diagrams. Conveniently, adding a BCFW bridge acts very nicely on permutations: it merely transposes the images of σ !

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching 'BCFW bridges’ can lead to very rich on-shell diagrams. Conveniently, adding a BCFW bridge acts very nicely on permutations: it merely transposes the images of σ !

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching ‘BCFW bridges’ can lead to very rich on-shell diagrams. Read the other way,

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching ‘BCFW bridges’ can lead to very rich on-shell diagrams. Read the other way,

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching 'BCFW bridges' can lead to very rich on-shell diagrams. Read the other way, we can 'peel-off' bridges and thereby decompose a permutation into transpositions according to $\sigma=(a b) \circ \sigma^{\prime}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions

'Bridge’ Decomposition $\sigma:\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 3 & 5 & 6 & 7 & 8 & 10\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions

```
`Bridge' Decomposition
[\begin{array}{ccccccc}{1}&{2}&{3}&{4}&{5}&{6}\\{\downarrow}&{\downarrow}&{\downarrow}&{\downarrow}&{\downarrow}&{\downarrow}\\{\mp@subsup{f}{\sigma}{}{3}&{5}&{6}&{7}&{8}&{10}}\end{array}
```


Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

'Bridge’ Decomposition

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} f_{1}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} f_{1}
$$

'Bridge' Decomposition

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} f_{2}
$$

'Bridge' Decomposition
$\left.\begin{array}{rrrrrr}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ f_{0}\{3 & 5 & 6 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{c}12\end{array}\right)$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} f_{2}
$$

'Bridge' Decomposition

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} f_{3}
$$

'Bridge' Decomposition

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} f_{3}
$$

'Bridge' Decomposition

$$
\left.\begin{array}{rrrrrr}
1 & 2 & 3 & 4 & 5 & 6 \\
\\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
f_{0}\{3 & 5 & 6 & 7 & 8 & 10
\end{array}\right\}\left(\begin{array}{c}
(12) \\
f_{1}\{5
\end{array} 3\right.
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} f_{4}
$$

'Bridge' Decomposition

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} f_{4}
$$

'Bridge' Decomposition

$$
\left.\begin{array}{rrrrrr}
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
f_{0}\{3 & 5 & 6 & 7 & 8 & 10
\end{array}\right\}\left(\begin{array}{c}
\tau \\
f_{1}\{5
\end{array} 3 \cdot 6\right.
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} f_{5}
$$

'Bridge' Decomposition

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} f_{5}
$$

'Bridge' Decomposition

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} f_{6}
$$

'Bridge' Decomposition

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} f_{6}
$$

'Bridge' Decomposition

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} f_{7}
$$

'Bridge' Decomposition

	$\begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \tau \end{array}$
	$f_{0}\left\{\begin{array}{llllll}3 & 5 & 6 & 7 & 8 & 10\end{array}\right\}$
	$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right.$
	$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}$
	$f_{3}\left\{\begin{array}{llllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}$
	$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}$
	$f_{5}\left\{\begin{array}{lllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}$
	$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}$
	$f_{7}\left\{\begin{array}{lllllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} f_{7}
$$

'Bridge' Decomposition

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

	$\begin{array}{llll}2 & 3 & 4 & 5 \\ \downarrow & \downarrow & \downarrow \\ \downarrow\end{array}$
	$f_{0}\left\{\begin{array}{lllll}3 & 5 & 6 & 7 & 8\end{array}\right.$
	$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}$
	$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}$
	$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}$
	$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}$
	$f_{5}\left\{\begin{array}{llllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}$
	$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}$
	$f_{7}\left\{\begin{array}{lllllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}$
	$f_{8}\left\{\begin{array}{llllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

	$\begin{array}{llll}2 & 3 & 4 & 5 \\ \downarrow & \downarrow & \downarrow \\ \downarrow\end{array}$
	$f_{0}\left\{\begin{array}{lllll}3 & 5 & 6 & 7 & 8\end{array}\right.$
	$f_{1}\left\{\begin{array}{lllllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}$
	$f_{2}\left\{\begin{array}{lllllll}5 & 6 & 3 & 7 & 8 & 10\end{array}\right\}$
	$f_{3}\left\{\begin{array}{lllllll}6 & 5 & 3 & 7 & 8 & 10\end{array}\right\}$
	$f_{4}\left\{\begin{array}{lllllll}6 & 7 & 3 & 5 & 8 & 10\end{array}\right\}$
	$f_{5}\left\{\begin{array}{llllllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}$
	$f_{6}\left\{\begin{array}{lllllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}$
	$f_{7}\left\{\begin{array}{lllllll}7 & 8 & 3 & 6 & 5 & 10\end{array}\right\}$
	$f_{8}\left\{\begin{array}{llllllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

$$
\left.\begin{array}{l}
\text { 'Bridge' } \begin{array}{rllll}
1 & \text { Decomposition } \\
\downarrow & \downarrow & 3 & 4 & 5
\end{array} \\
\\
\downarrow
\end{array}\right)
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

$$
\begin{aligned}
& \text { 'Bridge' Decomposition } \\
& \begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow
\end{array} \\
& \tau \\
& f_{2}\left\{\begin{array}{llllll}
5 & 6 & 3 & 7 & 8 & 10
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
f_{5}\left\{\begin{array}{llllll}
7 & 6 & 3 & 5 & 8 & 10
\end{array}\right\}\left(\begin{array}{l}
12) \\
f_{6}\{7 \\
\hline
\end{array}\right) \\
f_{7}\{7 \\
\{7 \\
8
\end{array} 3
\end{aligned}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

τ

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$$
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & \\
\\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
& &
\end{array}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition $\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \tau\end{array}$
$f_{5}\left\{\begin{array}{llllll}7 & 6 & 3 & 5 & 8 & 10\end{array}\right\}\left(\begin{array}{l}45) \\ f_{6}\{7 \\ 6\end{array}\right.$
3 8

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

τ

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

$$
\begin{array}{cccccc}
\text { 'Bridge' } & \text { Decomposition } \\
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow
\end{array} \tau
$$

$$
\begin{aligned}
& f_{7}\left\{\begin{array}{lllllll}
7 & 8 & 3 & 6 & 5 & 10
\end{array}\right\} \\
& f_{8}\left\{\begin{array}{llll}
7 & 8 & 3 & 10
\end{array}\right) \\
& \hline
\end{aligned}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

$$
\begin{array}{cccccc}
\text { 'Bridge' } & \text { Decomposition } \\
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow
\end{array} \tau
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

$$
\begin{array}{cccccc}
\text { 'Bridge' } & \text { Decomposition } \\
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow
\end{array} \tau
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$$
f_{8}=\prod_{a=\sigma(a)+n}\left(\delta^{4}\left(\widetilde{\eta}_{a}\right) \delta^{2}\left(\widetilde{\lambda}_{a}\right)\right) \prod_{b=\sigma(b)}\left(\delta^{2}\left(\lambda_{b}\right)\right)
$$

$$
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & \\
\\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \tau
\end{array}
$$

$$
f_{8}\left\{\begin{array}{llllll}
7 & 8 & 3 & 10 & 5 & 6
\end{array}\right\}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

$$
f_{8}=\prod_{a=\sigma(a)+n}\left(\delta^{4}\left(\widetilde{\eta}_{a}\right) \delta^{2}\left(\widetilde{\lambda}_{a}\right)\right) \prod_{b=\sigma(b)}\left(\delta^{2}\left(\lambda_{b}\right)\right)
$$

'Bridge' Decomposition

 $\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow\end{array}$ τ
$f_{8}\left\{\begin{array}{llllll}7 & 8 & 3 & 10 & 5 & 6\end{array}\right\}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$$
f_{8}=\delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$$
f_{8}=\delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$$
f_{7}=\frac{d \alpha_{8}}{\alpha_{8}} \delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)
$$

$$
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & \\
\\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \tau
\end{array}
$$

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & \alpha_{8}\end{array}\right)$

$$
(46): c_{6} \mapsto c_{6}+\alpha_{8} c_{4}
$$

$$
\left.\begin{array}{lllllll}
f_{7}\{7 & \{ & 8 & 3 & 6 & 5 & 10
\end{array}\right\}(46)
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

$f_{6}=\frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} \delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)$

'Bridge' Decomposition

 $\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \tau\end{array}$

$$
(24): c_{4} \mapsto c_{4}+\alpha_{7} c_{2}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$$
f_{5}=\frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} \delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)
$$ $\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \tau\end{array}$

$$
(45): c_{5} \mapsto c_{5}+\alpha_{6} c_{4}
$$

$$
\left.\begin{array}{l}
f_{5}\left\{\begin{array}{lllllll}
7 & 6 & 3 & 5 & 8 & 10
\end{array}\right\}(45) \\
f_{6}\{7 \\
6
\end{array}\right) 3
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$$
f_{4}=\frac{d \alpha_{5}}{\alpha_{5}} \cdots \frac{d \alpha_{8}}{\alpha_{8}} \delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)
$$ $\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \tau\end{array}$

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1 & \alpha_{5} & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & \alpha_{7} & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

$$
\text { (12): } c_{2} \mapsto c_{2}+\alpha_{5} c_{1}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$$
f_{3}=\frac{d \alpha_{4}}{\alpha_{4}} \cdots \frac{d \alpha_{8}}{\alpha_{8}} \delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)
$$ $\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \tau\end{array}$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
\begin{gathered}
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8} \\
f_{2}=\frac{d \alpha_{3}}{\alpha_{3}} \cdots \frac{d \alpha_{8}}{\alpha_{8}} \delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)
\end{gathered}
$$

'Bridge' Decomposition

 $\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow\end{array}$$$
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
& \downarrow & \downarrow & \downarrow & \downarrow & \downarrow
\end{array}
$$

$C \equiv\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1 & \left(\alpha_{3}+\alpha_{5}\right) & 0 & \alpha_{4} \alpha_{5} & 0 & 0 \\ 0 & 1 & 0 & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}\end{array}\right)$

$$
(12): c_{2} \mapsto c_{2}+\alpha_{3} c_{1}
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition

$$
f_{1}=\frac{d \alpha_{2}}{\alpha_{2}} \cdots \frac{d \alpha_{8}}{\alpha_{8}} \delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)
$$

$$
\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow
\end{array}
$$

$$
(23): c_{3} \mapsto c_{3}+\alpha_{2} c_{2}
$$

$f_{1}\left\{\begin{array}{llllll}5 & 3 & 6 & 7 & 8 & 10\end{array}\right\}\left(\begin{array}{l}23\end{array}\right)$
$f_{2}\{5$ 6

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

$$
(12): c_{2} \mapsto c_{2}+\alpha_{1} c_{1}
$$

'Bridge' Decomposition

$$
\begin{equation*}
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \cdots \frac{d \alpha_{8}}{\alpha_{8}} \delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right) \tag{12}
\end{equation*}
$$

$$
C \equiv\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \tag{23}\\
1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\
0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\
0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}
\end{array}\right)
$$

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition
$f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \cdots \frac{d \alpha_{8}}{\alpha_{8}} \delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)$

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \cdots \frac{d \alpha_{8}}{\alpha_{8}} \delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)
$$

$\left.\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ f_{0}\{3 & 5 & 6 & 7 & 8 & 10\end{array}\right\}(1$
τ (12)
(23)

$$
C \equiv\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \tag{24}\\
1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\
0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\
0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}
\end{array}\right)
$$

(12)
(45)
$f_{6}\left\{\begin{array}{llllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}$
(24)
(46)

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions-e.g., always choose the first transposition $\tau \equiv(a b)$ such that $\sigma(a)<\sigma(b)$:

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \frac{d \alpha_{3}}{\alpha_{3}} \frac{d \alpha_{4}}{\alpha_{4}} \frac{d \alpha_{5}}{\alpha_{5}} \frac{d \alpha_{6}}{\alpha_{6}} \frac{d \alpha_{7}}{\alpha_{7}} \frac{d \alpha_{8}}{\alpha_{8}} f_{8}
$$

'Bridge' Decomposition
$f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \cdots \frac{d \alpha_{8}}{\alpha_{8}} \delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)$

$$
f_{0}=\frac{d \alpha_{1}}{\alpha_{1}} \cdots \frac{d \alpha_{8}}{\alpha_{8}} \delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)
$$

$\left.\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ f_{0}\{3 & 5 & 6 & 7 & 8 & 10\end{array}\right\}(1$
τ (12)
(23)

$$
C \equiv\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \tag{24}\\
1\left(\alpha_{1}+\alpha_{3}+\alpha_{5}\right) & \alpha_{2}\left(\alpha_{3}+\alpha_{5}\right) & \alpha_{4} \alpha_{5} & 0 & 0 \\
0 & 1 & \alpha_{2} & \left(\alpha_{4}+\alpha_{7}\right) & \alpha_{6} \alpha_{7} & 0 \\
0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{8}
\end{array}\right)
$$

(12)
(45)
$f_{6}\left\{\begin{array}{llllll}7 & 6 & 3 & 8 & 5 & 10\end{array}\right\}$
(24)
(46)

Canonical Coordinates and the Manifestation of the Yangian

All on-shell diagrams, in terms of canonical coordinates, take the form:

Canonical Coordinates and the Manifestation of the Yangian

All on-shell diagrams, in terms of canonical coordinates, take the form:

$$
f=\int \frac{d \alpha_{1}}{\alpha_{1}} \wedge \cdots \wedge \frac{d \alpha_{d}}{\alpha_{d}} \delta^{k \times 4}(C(\vec{\alpha}) \cdot \widetilde{\eta}) \delta^{k \times 2}(C(\vec{\alpha}) \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C(\vec{\alpha})^{\perp}\right)
$$

Canonical Coordinates and the Manifestation of the Yangian

All on-shell diagrams, in terms of canonical coordinates, take the form:

$$
f=\int \frac{d \alpha_{1}}{\alpha_{1}} \wedge \cdots \wedge \frac{d \alpha_{d}}{\alpha_{d}} \delta^{k \times 4}(C(\vec{\alpha}) \cdot \widetilde{\eta}) \delta^{k \times 2}(C(\vec{\alpha}) \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C(\vec{\alpha})^{\perp}\right)
$$

Measure-preserving diffeomorphisms leave the function invariant

Canonical Coordinates and the Manifestation of the Yangian

All on-shell diagrams, in terms of canonical coordinates, take the form:

$$
f=\int \frac{d \alpha_{1}}{\alpha_{1}} \wedge \cdots \wedge \frac{d \alpha_{d}}{\alpha_{d}} \delta^{k \times 4}(C(\vec{\alpha}) \cdot \widetilde{\eta}) \delta^{k \times 2}(C(\vec{\alpha}) \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C(\vec{\alpha})^{\perp}\right)
$$

Measure-preserving diffeomorphisms leave the function invariant, butvia the δ-functions-can be recast variations of the kinematical data.

Canonical Coordinates and the Manifestation of the Yangian

All on-shell diagrams, in terms of canonical coordinates, take the form:

$$
f=\int \frac{d \alpha_{1}}{\alpha_{1}} \wedge \cdots \wedge \frac{d \alpha_{d}}{\alpha_{d}} \delta^{k \times 4}(C(\vec{\alpha}) \cdot \tilde{\eta}) \delta^{k \times 2}(C(\vec{\alpha}) \cdot \tilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C(\vec{\alpha})^{\perp}\right)
$$

Measure-preserving diffeomorphisms leave the function invariant, butvia the δ-functions-can be recast variations of the kinematical data.
The Yangian corresponds to those diffeomorphisms that simultaneously preserve the measures of all on-shell diagrams.

Canonical Coordinates and the Manifestation of the Yangian

All on-shell diagrams, in terms of canonical coordinates, take the form:

$$
f=\int \frac{d \alpha_{1}}{\alpha_{1}} \wedge \cdots \wedge \frac{d \alpha_{d}}{\alpha_{d}} \delta^{k \times 4}(C(\vec{\alpha}) \cdot \tilde{\eta}) \delta^{k \times 2}(C(\vec{\alpha}) \cdot \tilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C(\vec{\alpha})^{\perp}\right)
$$

Measure-preserving diffeomorphisms leave the function invariant, butvia the δ-functions-can be recast variations of the kinematical data.
The Yangian corresponds to those diffeomorphisms that simultaneously preserve the measures of all on-shell diagrams.

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 2 negative-helicity gluons

$$
\mathcal{A}_{n}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta}) \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})}{\langle 12\rangle\langle 23\rangle\langle 34\rangle \cdots\langle n 1\rangle}
$$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 2 negative-helicity gluons

$$
\mathcal{A}_{n}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta}) \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})}{\langle 12\rangle\langle 23\rangle\langle 34\rangle \cdots\langle n 1\rangle}
$$

$\lambda \equiv\left(\begin{array}{lllll}\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \cdots & \lambda_{n}^{1} \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \cdots & \lambda_{n}^{2}\end{array}\right)$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 2 negative-helicity gluons

$$
\mathcal{A}_{n}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta}) \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})}{\langle 12\rangle\langle 23\rangle\langle 34\rangle \cdots\langle n 1\rangle}
$$

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \cdots & \lambda_{n}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \cdots & \lambda_{n}^{2}
\end{array}\right)
$$

$$
\widetilde{\lambda}_{2 \text {-plane }} \uparrow
$$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 2 negative-helicity gluons

$$
\mathcal{A}_{n}^{(2)}=\frac{\delta^{2 \times 4}(\lambda \cdot \widetilde{\eta}) \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})}{\langle 12\rangle\langle 23\rangle\langle 34\rangle \cdots\langle n 1\rangle}
$$

$$
\lambda \equiv\left(\begin{array}{lllll}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \cdots & \lambda_{n}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \cdots & \lambda_{n}^{2}
\end{array}\right)
$$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with m negative-helicity gluons:

$$
\mathcal{A}_{n}^{(m)} \stackrel{?}{=} \frac{\delta^{m \times 4}(C \cdot \widetilde{\eta}) \delta^{m \times 2}(C \cdot \widetilde{\lambda})}{\langle 1 \cdots m\rangle\langle 2 \cdots m+1\rangle \cdots\langle n \cdots m-1\rangle}
$$

$$
C \equiv\left(\begin{array}{ccccc}
c_{1}^{1} & c_{2}^{1} & c_{3}^{1} & \cdots & c_{n}^{1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{1}^{m} & c_{2}^{m} & c_{3}^{m} & \cdots & c_{n}^{m}
\end{array}\right)
$$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with m negative-helicity gluons:

$$
\mathcal{A}_{n}^{(m)} \stackrel{?}{=} \frac{\delta^{m \times 4}(C \cdot \widetilde{\eta}) \delta^{m \times 2}(C \cdot \widetilde{\lambda})}{\langle 1 \cdots m\rangle\langle 2 \cdots m+1\rangle \cdots\langle n \cdots m-1\rangle}
$$

$$
C \equiv\left(\begin{array}{ccccc}
c_{1}^{1} & c_{2}^{1} & c_{3}^{1} & \cdots & c_{n}^{1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{1}^{m} & c_{2}^{m} & c_{3}^{m} & \cdots & c_{n}^{m}
\end{array}\right)
$$

In order for momentum conservation, $\delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})$, to be part of the constraints, we must have that $C \supset \lambda$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with m negative-helicity gluons:
$\mathcal{A}_{n}^{(m)} \stackrel{?}{=} \frac{\delta^{m \times 4}(C \cdot \widetilde{\eta}) \delta^{m \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-m)}\left(\lambda \cdot C^{\perp}\right)}{\langle 1 \cdots m\rangle\langle 2 \cdots m+1\rangle \cdots\langle n \cdots m-1\rangle}$
$C \equiv\left(\begin{array}{ccccc}c_{1}^{1} & c_{2}^{1} & c_{3}^{1} & \cdots & c_{n}^{1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{1}^{m} & c_{2}^{m} & c_{3}^{m} & \cdots & c_{n}^{m}\end{array}\right)$

In order for momentum conservation, $\delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})$, to be part of the constraints, we must have that $C \supset \lambda$, imposed via $\delta^{2 \times(n-m)}\left(\lambda \cdot C^{\perp}\right)$

Parke-Taylor 'Amplitudes’ and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to:
Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\mathcal{A}_{6}^{(3)} \stackrel{?}{=} \frac{\delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)}{\langle 123\rangle\langle 234\rangle\langle 345\rangle\langle 456\rangle\langle 561\rangle\langle 612\rangle}
$$

$$
C \equiv\left(\begin{array}{ccccc}
c_{1}^{1} & c_{2}^{1} & c_{3}^{1} & \cdots & c_{n}^{1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{1}^{m} & c_{2}^{m} & c_{3}^{m} & \cdots & c_{n}^{m}
\end{array}\right)
$$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\mathcal{A}_{6}^{(3)} \stackrel{?}{=} \frac{\delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)}{\langle 123\rangle\langle 234\rangle\langle 345\rangle\langle 456\rangle\langle 561\rangle\langle 612\rangle}
$$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\mathcal{A}_{6}^{(3)} \stackrel{?}{=} \frac{\delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)}{\langle 123\rangle\langle 234\rangle\langle 345\rangle\langle 456\rangle\langle 561\rangle\langle 612\rangle}
$$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\mathcal{A}_{6}^{(3)} \stackrel{?}{=} \frac{\delta^{3 \times 4}(C \cdot \widetilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)}{\langle 123\rangle\langle 234\rangle\langle 345\rangle\langle 456\rangle\langle 561\rangle\langle 612\rangle}
$$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\mathcal{A}_{6}^{(3)} \stackrel{?}{=} \frac{\delta^{3 \times 4}(C \cdot \tilde{\eta}) \delta^{3 \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times 3}\left(\lambda \cdot C^{\perp}\right)}{\langle 123\rangle\langle 234\rangle\langle 345\rangle\langle 456\rangle\langle 561\rangle\langle 612\rangle}
$$

Parke-Taylor 'Amplitudes’ and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\oint \frac{d \tau}{\langle 123\rangle(\tau) \cdot\langle 234\rangle(\tau) \cdot\langle 345\rangle(\tau) \cdot\langle 456\rangle(\tau) \cdot\langle 561\rangle(\tau) \cdot\langle 612\rangle(\tau)}
$$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\oint_{\langle 123\rangle=0} \frac{d \tau}{\langle 123\rangle(\tau) \cdot\langle 234\rangle(\tau) \cdot\langle 345\rangle(\tau) \cdot\langle 456\rangle(\tau) \cdot\langle 561\rangle(\tau) \cdot\langle 612\rangle(\tau)}
$$

$$
C \equiv\left(\begin{array}{cccccc}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \lambda_{4}^{1} & \lambda_{5}^{1} & \lambda_{6}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \lambda_{4}^{2} & \lambda_{5}^{2} & \lambda_{6}^{2} \\
0 & 0 & 0 & c_{4}^{3} & c_{5}^{3} & c_{6}^{3}
\end{array}\right)
$$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\oint_{\langle 234\rangle=0} \frac{d \tau}{\langle 123\rangle(\tau) \cdot\langle 234\rangle(\tau) \cdot\langle 345\rangle(\tau) \cdot\langle 456\rangle(\tau) \cdot\langle 561\rangle(\tau) \cdot\langle 612\rangle(\tau)}
$$

$$
C \equiv\left(\begin{array}{cccccc}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \lambda_{4}^{1} & \lambda_{5}^{1} & \lambda_{6}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \lambda_{4}^{2} & \lambda_{5}^{2} & \lambda_{6}^{2} \\
c_{1}^{3} & 0 & 0 & 0 & c_{5}^{3} & c_{6}^{3}
\end{array}\right)
$$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\oint_{\langle 345\rangle=0} \frac{d \tau}{\langle 123\rangle(\tau) \cdot\langle 234\rangle(\tau) \cdot\langle 345\rangle(\tau) \cdot\langle 456\rangle(\tau) \cdot\langle 561\rangle(\tau) \cdot\langle 612\rangle(\tau)}
$$

$$
C \equiv\left(\begin{array}{cccccc}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \lambda_{4}^{1} & \lambda_{5}^{1} & \lambda_{6}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \lambda_{4}^{2} & \lambda_{5}^{2} & \lambda_{6}^{2} \\
c_{1}^{3} & c_{2}^{3} & 0 & 0 & 0 & c_{6}^{3}
\end{array}\right)
$$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\oint_{\langle 456\rangle=0} \frac{d \tau}{\langle 123\rangle(\tau) \cdot\langle 234\rangle(\tau) \cdot\langle 345\rangle(\tau) \cdot\langle 456\rangle(\tau) \cdot\langle 561\rangle(\tau) \cdot\langle 612\rangle(\tau)}
$$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\oint_{\langle 561\rangle=0} \frac{d \tau}{\langle 123\rangle(\tau) \cdot\langle 234\rangle(\tau) \cdot\langle 345\rangle(\tau) \cdot\langle 456\rangle(\tau) \cdot\langle 561\rangle(\tau) \cdot\langle 612\rangle(\tau)}
$$

```
\(C \equiv\left(\begin{array}{cccccc}\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \lambda_{4}^{1} & \lambda_{5}^{1} & \lambda_{6}^{1} \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \lambda_{4}^{2} & \lambda_{5}^{2} & \lambda_{6}^{2} \\ 0 & c_{2}^{3} & c_{3}^{3} & c_{4}^{3} & 0 & 0\end{array}\right)\)
(1) \(\quad\) (2) \(\quad \frac{\tau}{}\)
```

```
(4)
```


Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to:
Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\oint_{\langle 612\rangle=0} \frac{d \tau}{\langle 123\rangle(\tau) \cdot\langle 234\rangle(\tau) \cdot\langle 345\rangle(\tau) \cdot\langle 456\rangle(\tau) \cdot\langle 561\rangle(\tau) \cdot\langle 612\rangle(\tau)}
$$

$$
\begin{aligned}
& C \equiv\left(\begin{array}{cccccc}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \lambda_{4}^{1} & \lambda_{5}^{1} & \lambda_{6}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \lambda_{4}^{2} & \lambda_{5}^{2} & \lambda_{6}^{2} \\
0 & 0 & c_{3}^{3} & c_{4}^{3} & c_{5}^{3} & 0
\end{array}\right) \\
& \text { (6). •(2) } \\
& \text { (5) } \\
& { }^{\bullet}(3) \\
& \text { (4) }
\end{aligned}
$$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to:
Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\oint_{\frac{d \tau}{} \frac{\delta^{3 \times 4}(C \cdot \tilde{\eta})}{} \delta^{2 \times 2}(\lambda \cdot \tilde{\lambda})}^{\langle 123\rangle(\tau) \cdot\langle 234\rangle(\tau) \cdot\langle 345\rangle(\tau) \cdot\langle 456\rangle(\tau) \cdot\langle 561\rangle(\tau) \cdot\langle 612\rangle(\tau)}
$$

$$
C \equiv\left(\begin{array}{cccccc}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \lambda_{4}^{1} & \lambda_{5}^{1} & \lambda_{6}^{1} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \lambda_{4}^{2} & \lambda_{5}^{2} & \lambda_{6}^{2} \\
c_{1}^{3} & c_{2}^{3} & c_{3}^{3} & c_{4}^{3} & c_{5}^{3} & c_{6}^{3}
\end{array}\right)
$$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\oint_{\langle 123\rangle=0} \frac{d \tau}{\langle 123\rangle(\tau) \cdot\langle 234\rangle(\tau) \cdot\langle 345\rangle(\tau) \cdot\langle 456\rangle(\tau) \cdot\langle 561\rangle(\tau) \cdot\langle 612\rangle(\tau)}
$$

$C \equiv\left(\begin{array}{cccccc}\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \lambda_{4}^{1} & \lambda_{5}^{1} & \lambda_{6}^{1} \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \lambda_{4}^{2} & \lambda_{5}^{2} & \lambda_{6}^{2} \\ 0 & 0 & 0 & c_{4}^{3} & c_{5}^{3} & c_{6}^{3}\end{array}\right)$

Parke-Taylor 'Amplitudes’ and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\oint_{\langle 123\rangle=0} \frac{d \tau}{\langle 123\rangle(\tau) \cdot\langle 234\rangle(\tau) \cdot\langle 345\rangle(\tau) \cdot\langle 456\rangle(\tau) \cdot\langle 561\rangle(\tau) \cdot\langle 612\rangle(\tau)}
$$

$(1) \Leftrightarrow\left(\begin{array}{cccccc}\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \lambda_{4}^{1} & \lambda_{5}^{1} & \lambda_{6}^{1} \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \lambda_{4}^{2} & \lambda_{5}^{2} & \lambda_{6}^{2} \\ 0 & 0 & 0 & {[56]} & {[64]} & {[45]}\end{array}\right)$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\oint_{\langle 123\rangle=0} \frac{d \tau}{\langle 123\rangle(\tau) \cdot\langle 234\rangle(\tau) \cdot\langle 345\rangle(\tau) \cdot\langle 456\rangle(\tau) \cdot\langle 561\rangle(\tau) \cdot\langle 612\rangle(\tau)}
$$

$(1) \Leftrightarrow\left(\begin{array}{cccccc}\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \lambda_{4}^{1} & \lambda_{5}^{1} & \lambda_{6}^{1} \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \lambda_{4}^{2} & \lambda_{5}^{2} & \lambda_{6}^{2} \\ 0 & 0 & 0 & {[56]} & {[64]} & {[45]}\end{array}\right)$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\oint_{\langle 123\rangle=0} \frac{d \tau}{\langle 123\rangle(\tau) \cdot\langle 234\rangle(\tau) \cdot\langle 345\rangle(\tau) \cdot\langle 456\rangle(\tau) \cdot\langle 561\rangle(\tau) \cdot\langle 612\rangle(\tau)}
$$

$(1) \Leftrightarrow\left(\begin{array}{c|ccc|cc}\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \lambda_{4}^{1} & \lambda_{5}^{1} & \lambda_{6}^{1} \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \lambda_{4}^{2} & \lambda_{5}^{2} & \lambda_{6}^{2} \\ 0 & 0 & 0 & {[56]} & {[64]} & {[45]}\end{array}\right)$

$$
1
$$

$$
\langle 23\rangle[56]
$$

Parke-Taylor 'Amplitudes’ and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\oint_{\langle 123\rangle=0} \frac{d \tau}{\langle 123\rangle(\tau) \cdot\langle 234\rangle(\tau) \cdot\langle 345\rangle(\tau) \cdot\langle 456\rangle(\tau) \cdot\langle 561\rangle(\tau) \cdot\langle 612\rangle(\tau)}
$$

$(1) \Leftrightarrow\left(\begin{array}{cc|ccc|c}\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \lambda_{4}^{1} & \lambda_{5}^{1} & \lambda_{6}^{1} \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \lambda_{4}^{2} & \lambda_{5}^{2} & \lambda_{6}^{2} \\ 0 & 0 & 0 & {[56]} & {[64]} & {[45]}\end{array}\right)$

Parke-Taylor 'Amplitudes’ and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\oint_{\langle 123\rangle=0} \frac{d \tau}{\langle 123\rangle(\tau) \cdot\langle 234\rangle(\tau) \cdot\langle 345\rangle(\tau) \cdot\langle 456\rangle(\tau) \cdot\langle 561\rangle(\tau) \cdot\langle 612\rangle(\tau)}
$$

$(1) \Leftrightarrow\left(\begin{array}{ccc|ccc}\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \lambda_{4}^{1} & \lambda_{5}^{1} & \lambda_{6}^{1} \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \lambda_{4}^{2} & \lambda_{5}^{2} & \lambda_{6}^{2} \\ 0 & 0 & 0 & {[56]} & {[64]} & {[45]}\end{array}\right)$

$$
\frac{1}{\langle 23\rangle[56][6|(5+4)| 3\rangle s_{456}}
$$

Parke-Taylor 'Amplitudes’ and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\oint_{\langle 123\rangle=0} \frac{d \tau}{\langle 123\rangle(\tau) \cdot\langle 234\rangle(\tau) \cdot\langle 345\rangle(\tau) \cdot\langle 456\rangle(\tau) \cdot\langle 561\rangle(\tau) \cdot\langle 612\rangle(\tau)}
$$

$(1) \Leftrightarrow\left(\begin{array}{c|ccc|cc}\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \lambda_{4}^{1} & \lambda_{5}^{1} & \lambda_{6}^{1} \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \lambda_{4}^{2} & \lambda_{5}^{2} & \lambda_{6}^{2} \\ 0 & 0 & 0 & {[56]} & {[64]} & {[45]}\end{array}\right)$

$\frac{1}{\left.\langle 23\rangle[56][6|(5+4)| 3\rangle S_{456}\langle 1|(6+5) \mid 4\right]}$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\oint_{\langle 123\rangle=0} \frac{d \tau}{\langle 123\rangle(\tau) \cdot\langle 234\rangle(\tau) \cdot\langle 345\rangle(\tau) \cdot\langle 456\rangle(\tau) \cdot\langle 561\rangle(\tau) \cdot\langle 612\rangle(\tau)}
$$

$(1) \Leftrightarrow\left(\begin{array}{cc|ccc|c}\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \lambda_{4}^{1} & \lambda_{5}^{1} & \lambda_{6}^{1} \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \lambda_{4}^{2} & \lambda_{5}^{2} & \lambda_{6}^{2} \\ 0 & 0 & 0 & {[56]} & {[64]} & {[45]}\end{array}\right)$

$\frac{1}{\left.\langle 23\rangle[56][6|(5+4)| 3\rangle s_{456}\langle 1|(6+5) \mid 4\right][45]\langle 12\rangle}$

Parke-Taylor 'Amplitudes’ and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\oint_{\langle 123\rangle=0} \frac{d \tau}{\langle 123\rangle(\tau) \cdot\langle 234\rangle(\tau) \cdot\langle 345\rangle(\tau) \cdot\langle 456\rangle(\tau) \cdot\langle 561\rangle(\tau) \cdot\langle 612\rangle(\tau)}
$$

$(1) \Leftrightarrow\left(\begin{array}{cccccc}\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \lambda_{4}^{1} & \lambda_{5}^{1} & \lambda_{6}^{1} \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \lambda_{4}^{2} & \lambda_{5}^{2} & \lambda_{6}^{2} \\ 0 & 0 & 0 & {[56]} & {[64]} & {[45]}\end{array}\right)$

$\frac{1}{\left.\langle 23\rangle[56][6|(5+4)| 3\rangle S_{456}\langle 1|(6+5) \mid 4\right][45]\langle 12\rangle}$

Parke-Taylor 'Amplitudes’ and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\oint_{\langle 123\rangle=0} \frac{d \tau \quad\left(\langle 246\rangle^{4} \widetilde{\eta}_{2}^{4} \widetilde{\eta}_{4}^{4} \widetilde{\eta}_{6}^{4}+\ldots\right) \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})}{\langle 123\rangle(\tau) \cdot\langle 234\rangle(\tau) \cdot\langle 345\rangle(\tau) \cdot\langle 456\rangle(\tau) \cdot\langle 561\rangle(\tau) \cdot\langle 612\rangle(\tau)}
$$

$(1) \Leftrightarrow\left(\begin{array}{cccccc}\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \lambda_{4}^{1} & \lambda_{5}^{1} & \lambda_{6}^{1} \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \lambda_{4}^{2} & \lambda_{5}^{2} & \lambda_{6}^{2} \\ 0 & 0 & 0 & {[56]} & {[64]} & {[45]}\end{array}\right)$

$$
\frac{\langle 2|(4+6) \mid 5]^{4}}{\left.\langle 23\rangle[56][6|(5+4)| 3\rangle s_{456}\langle 1|(6+5) \mid 4\right][45]\langle 12\rangle}
$$

Parke-Taylor 'Amplitudes’ and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\oint_{\langle 123\rangle=0} \frac{d \tau \quad\left(\langle 246\rangle^{4} \widetilde{\eta}_{2}^{4} \widetilde{\eta}_{4}^{4} \widetilde{\eta}_{6}^{4}+\ldots\right) \delta^{2 \times 2}(\lambda \cdot \widetilde{\lambda})}{\langle 123\rangle(\tau) \cdot\langle 234\rangle(\tau) \cdot\langle 345\rangle(\tau) \cdot\langle 456\rangle(\tau) \cdot\langle 561\rangle(\tau) \cdot\langle 612\rangle(\tau)}
$$

$$
(1) \Leftrightarrow\left(\begin{array}{cccccc}
\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \lambda_{4}^{1} & \lambda_{5}^{1} & \lambda_{6}^{1} \tag{!}\\
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \lambda_{4}^{2} & \lambda_{5}^{2} & \lambda_{6}^{2} \\
0 & 0 & 0 & {[56]} & {[64]} & {[45]}
\end{array}\right) \Leftrightarrow f_{\{3,5,6,7,8,10\}}
$$

$\mathcal{A}_{6}^{(3)}(+,-,+,-,+,-)=\left(1+r^{2}+r^{4}\right) \frac{\langle 2|(4+6) \mid 5]^{4}}{\left.\langle 23\rangle[56][6|(5+4)| 3\rangle s_{456}\langle 1|(6+5) \mid 4\right][45]\langle 12\rangle}$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\mathcal{A}_{6}^{(3)}=\oint \frac{d \tau}{\langle 123\rangle(\tau) \cdot\langle 234\rangle(\tau) \cdot\langle 345\rangle(\tau) \cdot\langle 456\rangle(\tau) \cdot\langle 561\rangle(\tau) \cdot\langle 612\rangle(\tau)}
$$

$(1) \Leftrightarrow\left(\begin{array}{cccccc}\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \lambda_{4}^{1} & \lambda_{5}^{1} & \lambda_{6}^{1} \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \lambda_{4}^{2} & \lambda_{5}^{2} & \lambda_{6}^{2} \\ 0 & 0 & 0 & {[56]} & {[64]} & {[45]}\end{array}\right)$
$\mathcal{A}_{6}^{(3)}(+,-,+,-,+,-)=(1)+(3)+(5)$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\mathcal{A}_{6}^{(3)}=\oint \frac{d \tau}{\langle 123\rangle(\tau) \cdot\langle 234\rangle(\tau) \cdot\langle 345\rangle(\tau) \cdot\langle 456\rangle(\tau) \cdot\langle 561\rangle(\tau) \cdot\langle 612\rangle(\tau)}
$$

$(1) \Leftrightarrow\left(\begin{array}{cccccc}\lambda_{1}^{1} & \lambda_{2}^{1} & \lambda_{3}^{1} & \lambda_{4}^{1} & \lambda_{5}^{1} & \lambda_{6}^{1} \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \lambda_{4}^{2} & \lambda_{5}^{2} & \lambda_{6}^{2} \\ 0 & 0 & 0 & {[56]} & {[64]} & {[45]}\end{array}\right)$
$\mathcal{A}_{6}^{(3)}(+,-,+,-,+,-)=(1)+(3)+(5)$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with 3 negative-helicity gluons-e.g.,

$$
\mathcal{A}_{6}^{(3)}=\oint \frac{d \tau}{\langle 123\rangle(\tau) \cdot\langle 234\rangle(\tau) \cdot\langle 345\rangle(\tau) \cdot\langle 456\rangle(\tau) \cdot\langle 561\rangle(\tau) \cdot\langle 612\rangle(\tau)}
$$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to:
Amplitudes with m negative-helicity gluons:

$$
\mathcal{A}_{n}^{(m)}=\oint \frac{d^{m \times n} C}{\operatorname{vol}(G L(m))} \frac{\delta^{m \times 4}(C \cdot \widetilde{\eta}) \delta^{m \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-m)}\left(\lambda \cdot C^{\perp}\right)}{\langle 12 \cdots m\rangle\langle 23 \cdots m+1\rangle \cdots\langle n 1 \cdots m-1\rangle}
$$

$$
C \equiv\left(\begin{array}{ccccc}
c_{1}^{1} & c_{2}^{1} & c_{3}^{1} & \cdots & c_{n}^{1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{1}^{m} & c_{2}^{m} & c_{3}^{m} & \cdots & c_{n}^{m}
\end{array}\right)
$$

Parke-Taylor 'Amplitudes’ and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to: Amplitudes with m negative-helicity gluons:

$$
\mathcal{L}_{n, m}=\oint \frac{d^{m \times n} C}{\operatorname{vol}(G L(m))} \frac{\delta^{m \times 4}(C \cdot \widetilde{\eta}) \delta^{m \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-m)}\left(\lambda \cdot C^{\perp}\right)}{\langle 12 \cdots m\rangle\langle 23 \cdots m+1\rangle \cdots\langle n 1 \cdots m-1\rangle}
$$

$$
C \equiv\left(\begin{array}{ccccc}
c_{1}^{1} & c_{2}^{1} & c_{3}^{1} & \cdots & c_{n}^{1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{1}^{m} & c_{2}^{m} & c_{3}^{m} & \cdots & c_{n}^{m}
\end{array}\right)
$$

Parke-Taylor 'Amplitudes’ and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to:
Amplitudes with m negative-helicity gluons:

$$
\mathcal{L}_{n, m}=\oint \frac{d^{m \times n} C}{\operatorname{vol}(G L(m))} \frac{\delta^{m \times 4}(C \cdot \widetilde{\eta}) \delta^{m \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-m)}\left(\lambda \cdot C^{\perp}\right)}{\langle 12 \cdots m\rangle\langle 23 \cdots m+1\rangle \cdots\langle n 1 \cdots m-1\rangle}
$$

$$
C \equiv\left(\begin{array}{ccccc}
c_{1}^{1} & c_{2}^{1} & c_{3}^{1} & \cdots & c_{n}^{1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{1}^{m} & c_{2}^{m} & c_{3}^{m} & \cdots & c_{n}^{m}
\end{array}\right)
$$

Grassmannian Correspondence:

The residues of $\mathcal{L}_{n, m}$ are in one-to-one correspondence with on-shell functions of $\mathcal{N}=4$

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to:
Amplitudes with m negative-helicity gluons:
$\mathcal{L}_{n, m}=\oint \frac{d^{m \times n} C}{\operatorname{vol}(G L(m))} \frac{\delta^{m \times 4}(C \cdot \widetilde{\eta}) \delta^{m \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-m)}\left(\lambda \cdot C^{\perp}\right)}{\langle 12 \cdots m\rangle\langle 23 \cdots m+1\rangle \cdots\langle n 1 \cdots m-1\rangle}$

$$
C \equiv\left(\begin{array}{ccccc}
c_{1}^{1} & c_{2}^{1} & c_{3}^{1} & \cdots & c_{n}^{1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{1}^{m} & c_{2}^{m} & c_{3}^{m} & \cdots & c_{n}^{m}
\end{array}\right)
$$

Grassmannian Correspondence:
The residues of $\mathcal{L}_{n, m}$ are in one-to-one correspondence with on-shell functions of $\mathcal{N}=4$

- what are the possible contours of integration for $\mathcal{L}_{n, m}$?
- how are they classified?
- what relations do they satisfy?

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to:
Amplitudes with m negative-helicity gluons:
$\mathcal{L}_{n, m}=\oint \frac{d^{m \times n} C}{\operatorname{vol}(G L(m))} \frac{\delta^{m \times 4}(C \cdot \widetilde{\eta}) \delta^{m \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-m)}\left(\lambda \cdot C^{\perp}\right)}{\langle 12 \cdots m\rangle\langle 23 \cdots m+1\rangle \cdots\langle n 1 \cdots m-1\rangle}$

$$
C \equiv\left(\begin{array}{ccccc}
c_{1}^{1} & c_{2}^{1} & c_{3}^{1} & \cdots & c_{n}^{1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{1}^{m} & c_{2}^{m} & c_{3}^{m} & \cdots & c_{n}^{m}
\end{array}\right)
$$

Grassmannian Correspondence:
The residues of $\mathcal{L}_{n, m}$ are in one-to-one correspondence with on-shell functions of $\mathcal{N}=4$

- what are the possible contours of integration for $\mathcal{L}_{n, m}$?
- how are they classified?
- what relations do they satisfy?

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to:
Amplitudes with m negative-helicity gluons:
$\mathcal{L}_{n, m}=\oint \frac{d^{m \times n} C}{\operatorname{vol}(G L(m))} \frac{\delta^{m \times 4}(C \cdot \widetilde{\eta}) \delta^{m \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-m)}\left(\lambda \cdot C^{\perp}\right)}{\langle 12 \cdots m\rangle\langle 23 \cdots m+1\rangle \cdots\langle n 1 \cdots m-1\rangle}$

$$
C \equiv\left(\begin{array}{ccccc}
c_{1}^{1} & c_{2}^{1} & c_{3}^{1} & \cdots & c_{n}^{1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{1}^{m} & c_{2}^{m} & c_{3}^{m} & \cdots & c_{n}^{m}
\end{array}\right)
$$

Grassmannian Correspondence:
The residues of $\mathcal{L}_{n, m}$ are in one-to-one correspondence with on-shell functions of $\mathcal{N}=4$

- what are the possible contours of integration for $\mathcal{L}_{n, m}$?
- how are they classified? how are they identified as on-shell diagrams?
- what relations do they satisfy?

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to:
Amplitudes with m negative-helicity gluons:
$\mathcal{L}_{n, m}=\oint \frac{d^{m \times n} C}{\operatorname{vol}(G L(m))} \frac{\delta^{m \times 4}(C \cdot \widetilde{\eta}) \delta^{m \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-m)}\left(\lambda \cdot C^{\perp}\right)}{\langle 12 \cdots m\rangle\langle 23 \cdots m+1\rangle \cdots\langle n 1 \cdots m-1\rangle}$

$$
C \equiv\left(\begin{array}{ccccc}
c_{1}^{1} & c_{2}^{1} & c_{3}^{1} & \cdots & c_{n}^{1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{1}^{m} & c_{2}^{m} & c_{3}^{m} & \cdots & c_{n}^{m}
\end{array}\right)
$$

Grassmannian Correspondence:
The residues of $\mathcal{L}_{n, m}$ are in one-to-one correspondence with on-shell functions of $\mathcal{N}=4$

- what are the possible contours of integration for $\mathcal{L}_{n, m}$?
- how are they classified? how are they identified as on-shell diagrams?
- what relations do they satisfy?

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to:
Amplitudes with m negative-helicity gluons:
$\mathcal{L}_{n, m}=\oint \frac{d^{m \times n} C}{\operatorname{vol}(G L(m))} \frac{\delta^{m \times 4}(C \cdot \widetilde{\eta}) \delta^{m \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-m)}\left(\lambda \cdot C^{\perp}\right)}{\langle 12 \cdots m\rangle\langle 23 \cdots m+1\rangle \cdots\langle n 1 \cdots m-1\rangle}$

$$
C \equiv\left(\begin{array}{ccccc}
c_{1}^{1} & c_{2}^{1} & c_{3}^{1} & \cdots & c_{n}^{1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{1}^{m} & c_{2}^{m} & c_{3}^{m} & \cdots & c_{n}^{m}
\end{array}\right)
$$

Grassmannian Correspondence:
The residues of $\mathcal{L}_{n, m}$ are in one-to-one correspondence with on-shell functions of $\mathcal{N}=4$

- what are the possible contours of integration for $\mathcal{L}_{n, m}$?
- how are they classified? how are they identified as on-shell diagrams?
- what relations do they satisfy?

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to:
Amplitudes with m negative-helicity gluons:
$\mathcal{L}_{n, m}=\oint \frac{d^{m \times n} C}{\operatorname{vol}(G L(m))} \frac{\delta^{m \times 4}(C \cdot \widetilde{\eta}) \delta^{m \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-m)}\left(\lambda \cdot C^{\perp}\right)}{\langle 12 \cdots m\rangle\langle 23 \cdots m+1\rangle \cdots\langle n 1 \cdots m-1\rangle}$

$$
C \equiv\left(\begin{array}{ccccc}
c_{1}^{1} & c_{2}^{1} & c_{3}^{1} & \cdots & c_{n}^{1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{1}^{m} & c_{2}^{m} & c_{3}^{m} & \cdots & c_{n}^{m}
\end{array}\right)
$$

Grassmannian Correspondence:
The residues of $\mathcal{L}_{n, m}$ are in one-to-one correspondence with on-shell functions of $\mathcal{N}=4$

- what are the possible contours of integration for $\mathcal{L}_{n, m}$?
- how are they classified? how are they identified as on-shell diagrams?
- what relations do they satisfy?

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to:
Amplitudes with m negative-helicity gluons:
$\mathcal{L}_{n, m}=\oint \frac{d^{m \times n} C}{\operatorname{vol}(G L(m))} \frac{\delta^{m \times 4}(C \cdot \widetilde{\eta}) \delta^{m \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-m)}\left(\lambda \cdot C^{\perp}\right)}{\langle 12 \cdots m\rangle\langle 23 \cdots m+1\rangle \cdots\langle n 1 \cdots m-1\rangle}$

$$
C \equiv\left(\begin{array}{ccccc}
c_{1}^{1} & c_{2}^{1} & c_{3}^{1} & \cdots & c_{n}^{1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{1}^{m} & c_{2}^{m} & c_{3}^{m} & \cdots & c_{n}^{m}
\end{array}\right)
$$

Grassmannian Correspondence:
The residues of $\mathcal{L}_{n, m}$ are in one-to-one correspondence with on-shell functions of $\mathcal{N}=4$

- what are the possible contours of integration for $\mathcal{L}_{n, m}$?
- how are they classified? how are they identified as on-shell diagrams?
- what relations do they satisfy?

Parke-Taylor 'Amplitudes' and Grassmannian Residues

Recall the natural desire to generalize the Parke-Taylor formula according to:
Amplitudes with m negative-helicity gluons:
$\mathcal{L}_{n, m}=\oint \frac{d^{m \times n} C}{\operatorname{vol}(G L(m))} \frac{\delta^{m \times 4}(C \cdot \widetilde{\eta}) \delta^{m \times 2}(C \cdot \widetilde{\lambda}) \delta^{2 \times(n-m)}\left(\lambda \cdot C^{\perp}\right)}{\langle 12 \cdots m\rangle\langle 23 \cdots m+1\rangle \cdots\langle n 1 \cdots m-1\rangle}$

$$
C \equiv\left(\begin{array}{ccccc}
c_{1}^{1} & c_{2}^{1} & c_{3}^{1} & \cdots & c_{n}^{1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{1}^{m} & c_{2}^{m} & c_{3}^{m} & \cdots & c_{n}^{m}
\end{array}\right)
$$

Grassmannian Correspondence:
The residues of $\mathcal{L}_{n, m}$ are in one-to-one correspondence with on-shell functions of $\mathcal{N}=4$

- what are the possible contours of integration for $\mathcal{L}_{n, m}$?
- how are they classified? how are they identified as on-shell diagrams?
- what relations do they satisfy?

The Combinatorics and Geometry of On-Shell Physics

The Combinatorics and Geometry of On-Shell Physics

$C(\alpha) \equiv\left(\begin{array}{lllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right) \in G_{+}(4,9)$

The Combinatorics and Geometry of On-Shell Physics

$C(\alpha) \equiv\left(\begin{array}{ccccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & \alpha_{1} & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right) \in G_{+}(4,9)$

The Combinatorics and Geometry of On-Shell Physics

The Combinatorics and Geometry of On-Shell Physics

$C(\alpha) \equiv\left(\begin{array}{ccccccccc}1 & \alpha_{8} & \alpha_{5} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & \alpha_{4} & \alpha_{7} \alpha_{4} & 0 & 0 \\ -\alpha_{9} \alpha_{3} & 0 & 0 & 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{3} \\ -\alpha_{9} & 0 & \alpha_{1} & 0 & 0 & -\alpha_{2} \alpha_{1} & -\alpha_{7} \alpha_{2} \alpha_{1} & 0 & 1\end{array}\right) \in G_{+}(4,9)$

The Combinatorics and Geometry of On-Shell Physics

$C(\alpha) \equiv\left(\begin{array}{ccccccccc}1 & \alpha_{8} & \alpha_{5} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \alpha_{10} & \alpha_{4} & \alpha_{7} \alpha_{4} & 0 & 0 \\ -\alpha_{9} \alpha_{3} & 0 & 0 & 0 & 0 & 0 & 1 & \alpha_{6} & \alpha_{3} \\ -\alpha_{9} & 0 & \alpha_{1} & 0 & 0 & -\alpha_{2} \alpha_{1} & -\alpha_{7} \alpha_{2} \alpha_{1} & 0 & 1\end{array}\right) \in G_{+}(4,9)$

The Combinatorics and Geometry of On-Shell Physics

$C(\alpha) \equiv\left(\begin{array}{cccccccc}1 & \alpha_{8} & \alpha_{5} & \alpha_{11} \alpha_{5} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \alpha_{10} & \alpha_{4} & \alpha_{7} \alpha_{4} & 0 \\ 0 & 0 & 1 & \alpha_{6} & \alpha_{3} \\ -\alpha_{9} \alpha_{3} & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ -\alpha_{9} & 0 & \alpha_{1} & \alpha_{11} \alpha_{1} & 0 & -\alpha_{2} \alpha_{1} & -\alpha_{7} \alpha_{2} \alpha_{1} & 0\end{array}\right.$

The Combinatorics and Geometry of On-Shell Physics

$C(\alpha) \equiv\left(\begin{array}{cccccccc}1 & \alpha_{8} & \alpha_{5} & \alpha_{11} \alpha_{5} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \alpha_{10} & \alpha_{4} & \alpha_{7} \alpha_{4} & 0 \\ 0 \\ -\alpha_{9} \alpha_{3} & 0 & 0 & 0 & 0 & 0 & 1 & \alpha_{6}\left(\alpha_{3}+\alpha_{12} \alpha_{6}\right) \\ -\alpha_{9} & 0 & \alpha_{1} & \alpha_{11} \alpha_{1} & 0 & -\alpha_{2} \alpha_{1} & -\alpha_{7} \alpha_{2} \alpha_{1} & 0\end{array} 11\right) \in G_{+}(4,9)$

The Combinatorics and Geometry of On-Shell Physics

$$
C(\alpha) \equiv\left(\begin{array}{cccccccccc}
1 & \alpha_{8} & \alpha_{5} & \alpha_{11} \alpha_{5} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \alpha_{10}\left(\alpha_{4}+\alpha_{13}\right. & \left.\alpha_{10}\right) & \alpha_{7} \alpha_{4} & 0 & 0 \\
-\alpha_{9} \alpha_{3} & 0 & 0 & 0 & 0 & 0 & 1 & \alpha_{6}\left(\alpha_{3}+\alpha_{12} \alpha_{6}\right) \\
-\alpha_{9} & 0 & \alpha_{1} & \alpha_{11} \alpha_{1} & 0 & -\alpha_{2} \alpha_{1} & -\alpha_{7} \alpha_{2} \alpha_{1} & 0 & 1
\end{array}\right) \in G_{+}(4,9)
$$

The Combinatorics and Geometry of On-Shell Physics

The Combinatorics and Geometry of On-Shell Physics

$$
C(\alpha) \equiv\left(\begin{array}{ccccccccc}
1 & \alpha_{8}\left(\alpha_{5}+\alpha_{14} \alpha_{8}\right) & \alpha_{11} \alpha_{5} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \alpha_{10}\left(\alpha_{4}+\alpha_{13} \alpha_{10}\right) & \alpha_{7} \alpha_{4} & 0 & 0 \\
-\alpha_{9} \alpha_{3} & 0 & 0 & 0 & 0 & 0 & 1 & \alpha_{6}\left(\alpha_{3}+\alpha_{12} \alpha_{6}\right) \\
-\alpha_{9} & 0 & \alpha_{1} & \alpha_{11} \alpha_{1} & 0 & -\alpha_{2} \alpha_{1} & -\alpha_{7} \alpha_{2} \alpha_{1} & 0 & 1
\end{array}\right) \in G_{+}(4,9)
$$

The Combinatorics and Geometry of On-Shell Physics

$$
C(\alpha) \equiv\left(\begin{array}{ccccccccc}
1 & \alpha_{8}\left(\alpha_{5}+\alpha_{14} \alpha_{8}\right) & \alpha_{11} \alpha_{5} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \alpha_{10}\left(\alpha_{4}+\alpha_{13} \alpha_{10}\right) & \alpha_{7} \alpha_{4} & 0 & 0 \\
-\alpha_{9} \alpha_{3} & 0 & 0 & 0 & 0 & 0 & 1 & \alpha_{6}\left(\alpha_{3}+\alpha_{12} \alpha_{6}\right) \\
-\alpha_{9} & 0 & \alpha_{1} & \alpha_{11} \alpha_{1} & 0 & -\alpha_{2} \alpha_{1} & -\alpha_{7} \alpha_{2} \alpha_{1} & 0 & 1
\end{array}\right) \in G_{+}(4,9)
$$

The Combinatorics and Geometry of On-Shell Physics

$C(\alpha) \equiv\left(\begin{array}{cccccccc}1 & \alpha_{8}\left(\alpha_{5}+\alpha_{14}\right. & \left.\alpha_{8}\right) & \alpha_{11} & \alpha_{5} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \alpha_{10} & \left(\alpha_{4}+\alpha_{13} \alpha_{10}\right) & \alpha_{7} \alpha_{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ -\alpha_{9} \alpha_{3} & 0 & 0 & \alpha_{6}\left(\alpha_{3}+\alpha_{12} \alpha_{6}\right) \\ -\alpha_{9} & 0 & \alpha_{1} & \alpha_{11} \alpha_{1} & 0 & -\alpha_{2} \alpha_{1} & -\alpha_{7} \alpha_{2} \alpha_{1} & 0\end{array}\right) \in G_{+}(4,9)$

$$
f_{\sigma} \equiv \int \frac{d \alpha_{1}}{\alpha_{1}} \wedge \cdots \wedge \frac{d \alpha_{14}}{\alpha_{14}} \delta^{k \times 4}(C(\alpha) \cdot \widetilde{\eta}) \delta^{k \times 2}(C(\alpha) \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C(\alpha)^{\perp}\right)
$$

The Combinatorics and Geometry of On-Shell Physics

$\left.C(\alpha) \equiv\left(\begin{array}{cccccccc}1 & \alpha_{8} & \left(\alpha_{5}+\alpha_{14} \alpha_{8}\right) & \alpha_{11} & \alpha_{5} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \alpha_{10}\left(\alpha_{4}+\alpha_{13} \alpha_{10}\right) & \alpha_{7} \alpha_{4} & 0 & 0 \\ -\alpha_{9} \alpha_{3} & 0 & 0 & 0 & 0 & 0 & 1 & \alpha_{6}\left(\alpha_{3}+\alpha_{12} \alpha_{6}\right) \\ -\alpha_{9} & 0 & \alpha_{1} & \alpha_{11} \alpha_{1} & 0 & -\alpha_{2} \alpha_{1} & -\alpha_{7} \alpha_{2} \alpha_{1} & 0\end{array}\right] 11\right) \in G_{+}(4,9)$

$$
f_{\sigma} \equiv \int \frac{d \alpha_{1}}{\alpha_{1}} \wedge \cdots \wedge \frac{d \alpha_{14}}{\alpha_{14}} \delta^{k \times 4}(C(\alpha) \cdot \widetilde{\eta}) \delta^{k \times 2}(C(\alpha) \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C(\alpha)^{\perp}\right)
$$

The Combinatorics and Geometry of On-Shell Physics

$\left.C(\alpha) \equiv\left(\begin{array}{cccccccc}1 & \alpha_{8} & \left(\alpha_{5}+\alpha_{14} \alpha_{8}\right) & \alpha_{11} & \alpha_{5} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \alpha_{10}\left(\alpha_{4}+\alpha_{13} \alpha_{10}\right) & \alpha_{7} \alpha_{4} & 0 & 0 \\ -\alpha_{9} \alpha_{3} & 0 & 0 & 0 & 0 & 0 & 1 & \alpha_{6}\left(\alpha_{3}+\alpha_{12} \alpha_{6}\right) \\ -\alpha_{9} & 0 & \alpha_{1} & \alpha_{11} \alpha_{1} & 0 & -\alpha_{2} \alpha_{1} & -\alpha_{7} \alpha_{2} \alpha_{1} & 0\end{array}\right] 11\right) \in G_{+}(4,9)$

$$
f_{\sigma} \equiv \int \frac{d \alpha_{1}}{\alpha_{1}} \wedge \cdots \wedge \frac{d \alpha_{14}}{\alpha_{14}} \delta^{k \times 4}(C(\alpha) \cdot \widetilde{\eta}) \delta^{k \times 2}(C(\alpha) \cdot \widetilde{\lambda}) \delta^{2 \times(n-k)}\left(\lambda \cdot C(\alpha)^{\perp}\right)
$$

The Combinatorics and Geometry of On-Shell Physics

$$
C(\alpha) \equiv\left(\begin{array}{ccccccccc}
1 & \alpha_{8}\left(\alpha_{5}+\alpha_{14}\right. & \left.\alpha_{8}\right) & \alpha_{11} \alpha_{5} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \alpha_{10}\left(\alpha_{4}+\alpha_{13} \alpha_{10}\right) & \alpha_{7} \alpha_{4} & 0 & 0 \\
-\alpha_{9} \alpha_{3} & 0 & 0 & 0 & 0 & 0 & 1 & \alpha_{6}\left(\alpha_{3}+\alpha_{12} \alpha_{6}\right) \\
-\alpha_{9} & 0 & \alpha_{1} & \alpha_{11} \alpha_{1} & 0 & -\alpha_{2} \alpha_{1} & -\alpha_{7} \alpha_{2} \alpha_{1} & 0 & 1
\end{array}\right) \in G_{+}(4,9)
$$

The Combinatorics and Geometry of On-Shell Physics

$$
C(\alpha) \equiv\left(\begin{array}{ccccccccc}
1 & \alpha_{8}\left(\alpha_{5}+\alpha_{14}\right. & \left.\alpha_{8}\right) & \alpha_{11} \alpha_{5} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \alpha_{10}\left(\alpha_{4}+\alpha_{13} \alpha_{10}\right) & \alpha_{7} \alpha_{4} & 0 & 0 \\
-\alpha_{9} \alpha_{3} & 0 & 0 & 0 & 0 & 0 & 1 & \alpha_{6}\left(\alpha_{3}+\alpha_{12} \alpha_{6}\right) \\
-\alpha_{9} & 0 & \alpha_{1} & \alpha_{11} \alpha_{1} & 0 & -\alpha_{2} \alpha_{1} & -\alpha_{7} \alpha_{2} \alpha_{1} & 0 & 1
\end{array}\right) \in G_{+}(4,9)
$$

The Combinatorics and Geometry of On-Shell Physics

$$
C(\alpha) \equiv\left(\begin{array}{ccccccccc}
1 & \alpha_{8}\left(\alpha_{5}+\alpha_{14}\right. & \left.\alpha_{8}\right) & \alpha_{11} \alpha_{5} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \alpha_{10}\left(\alpha_{4}+\alpha_{13} \alpha_{10}\right) & \alpha_{7} \alpha_{4} & 0 & 0 \\
-\alpha_{9} \alpha_{3} & 0 & 0 & 0 & 0 & 0 & 1 & \alpha_{6}\left(\alpha_{3}+\alpha_{12} \alpha_{6}\right) \\
-\alpha_{9} & 0 & \alpha_{1} & \alpha_{11} \alpha_{1} & 0 & -\alpha_{2} \alpha_{1} & -\alpha_{7} \alpha_{2} \alpha_{1} & 0 & 1
\end{array}\right) \in G_{+}(4,9)
$$

The Combinatorics and Geometry of On-Shell Physics

$$
C(\alpha) \equiv\left(\begin{array}{ccccccccc}
1 & \alpha_{8}\left(\alpha_{5}+\alpha_{14}\right. & \left.\alpha_{8}\right) & \alpha_{11} \alpha_{5} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \alpha_{10}\left(\alpha_{4}+\alpha_{13} \alpha_{10}\right) & \alpha_{7} \alpha_{4} & 0 & 0 \\
-\alpha_{9} \alpha_{3} & 0 & 0 & 0 & 0 & 0 & 1 & \alpha_{6}\left(\alpha_{3}+\alpha_{12} \alpha_{6}\right) \\
-\alpha_{9} & 0 & \alpha_{1} & \alpha_{11} \alpha_{1} & 0 & -\alpha_{2} \alpha_{1} & -\alpha_{7} \alpha_{2} \alpha_{1} & 0 & 1
\end{array}\right) \in G_{+}(4,9)
$$

The Combinatorics and Geometry of On-Shell Physics

$$
C(\alpha) \equiv\left(\begin{array}{ccccccccc}
1 & \alpha_{8}\left(\alpha_{5}+\alpha_{14}\right. & \left.\alpha_{8}\right) & \alpha_{11} \alpha_{5} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \alpha_{10}\left(\alpha_{4}+\alpha_{13} \alpha_{10}\right) & \alpha_{7} \alpha_{4} & 0 & 0 \\
-\alpha_{9} \alpha_{3} & 0 & 0 & 0 & 0 & 0 & 1 & \alpha_{6}\left(\alpha_{3}+\alpha_{12} \alpha_{6}\right) \\
-\alpha_{9} & 0 & \alpha_{1} & \alpha_{11} \alpha_{1} & 0 & -\alpha_{2} \alpha_{1} & -\alpha_{7} \alpha_{2} \alpha_{1} & 0 & 1
\end{array}\right) \in G_{+}(4,9)
$$

Open Directions for Further Research

Further applications and directions for future research:

Open Directions for Further Research

Further applications and directions for future research:

- Applications to non-planar field theories:

Open Directions for Further Research

Further applications and directions for future research:

- Applications to non-planar field theories:
- a combinatorial(?) classification of non-planar on-shell functions

Open Directions for Further Research

Further applications and directions for future research:

- Applications to non-planar field theories:
- a combinatorial(?) classification of non-planar on-shell functions
- homological understanding of identities among on-shell functions

Open Directions for Further Research

Further applications and directions for future research:

- Applications to non-planar field theories:
- a combinatorial(?) classification of non-planar on-shell functions
- homological understanding of identities among on-shell functions
- Applications to theories with $\mathcal{N}<4$ supersymmetries

Open Directions for Further Research

Further applications and directions for future research:

- Applications to non-planar field theories:
- a combinatorial(?) classification of non-planar on-shell functions
- homological understanding of identities among on-shell functions
- Applications to theories with $\mathcal{N}<4$ supersymmetries
- a combinatorial(?) classification of oriented on-shell functions

Open Directions for Further Research

Further applications and directions for future research:

- Applications to non-planar field theories:
- a combinatorial(?) classification of non-planar on-shell functions
- homological understanding of identities among on-shell functions
- Applications to theories with $\mathcal{N}<4$ supersymmetries
- a combinatorial(?) classification of oriented on-shell functions
- A purely homological definition of amplitudes-i.e. the amplituhedron

Open Directions for Further Research

Further applications and directions for future research:

- Applications to non-planar field theories:
- a combinatorial(?) classification of non-planar on-shell functions
- homological understanding of identities among on-shell functions
- Applications to theories with $\mathcal{N}<4$ supersymmetries
- a combinatorial(?) classification of oriented on-shell functions
- A purely homological definition of amplitudes-i.e. the amplituhedron
- Loop integration in the Grassmannian:

Open Directions for Further Research

Further applications and directions for future research:

- Applications to non-planar field theories:
- a combinatorial(?) classification of non-planar on-shell functions
- homological understanding of identities among on-shell functions
- Applications to theories with $\mathcal{N}<4$ supersymmetries
- a combinatorial(?) classification of oriented on-shell functions
- A purely homological definition of amplitudes-i.e. the amplituhedron
- Loop integration in the Grassmannian:
- evaluating (and regulating the divergences of) loop integrals

Open Directions for Further Research

Further applications and directions for future research:

- Applications to non-planar field theories:
- a combinatorial(?) classification of non-planar on-shell functions
- homological understanding of identities among on-shell functions
- Applications to theories with $\mathcal{N}<4$ supersymmetries
- a combinatorial(?) classification of oriented on-shell functions
- A purely homological definition of amplitudes-i.e. the amplituhedron
- Loop integration in the Grassmannian:
- evaluating (and regulating the divergences of) loop integrals
- polylogarithms, elliptic integrals, and motivic cohomology

Open Directions for Further Research

Further applications and directions for future research:

- Applications to non-planar field theories:
- a combinatorial(?) classification of non-planar on-shell functions
- homological understanding of identities among on-shell functions
- Applications to theories with $\mathcal{N}<4$ supersymmetries
- a combinatorial(?) classification of oriented on-shell functions
- A purely homological definition of amplitudes-i.e. the amplituhedron
- Loop integration in the Grassmannian:
- evaluating (and regulating the divergences of) loop integrals
- polylogarithms, elliptic integrals, and motivic cohomology

A Contribution to the 40-Particle Scattering Amplitude

