

Natural Supersymmetry Breaking with Meta-stable Vacua

Moritz McGarrie

with S.Abel (IPPP, Durham)

ArXiv: 1404:1318 (JHEP)

Natural SUSY checklist

The I26 GeV Higgs- NMSSM

or non decoupled D-terms e.g. (Aoife Bharucha, Andreas Goudelis & MM) 1310.4500

• Light stops (lighter than 1st & 2nd generation squarks)

Dynamical explanation? Soft masses cannot be the same

$$m_{h_0}^2 = m_z^2 \cos(2\beta) + \lambda^2 v_{ew}^2 \sin(2\beta)$$

$$\delta m_{H_u}^2 \sim -\frac{3y_t^2 m_{\tilde{t}}^2}{4\pi^2} \mathrm{Log}\left(\frac{\Lambda}{m_{\tilde{t}}}\right)$$

$$m^2_{(Q,U,D)_3} << m^2_{(Q,U,D)_{1,2}}$$

Connection to Flavour?
$$Y_u \simeq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_t \end{pmatrix}$$
, $Y_d \simeq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_b \end{pmatrix}$, $Y_e \simeq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_\tau \end{pmatrix}$

No (excluded) FCNC's please!

• Realistic models of SUSY breaking? - ISS magnetic SQCD

A common problem!

Other approaches such as making At large, still need to explain why stops are lighter than 1st two generations? e.g. "Large At Without the Desert"-ArXiv: 1405:1038

Why?
$$m^2_{(Q,U,D)_3} << m^2_{(Q,U,D)_{1,2}}$$

Typically for all mSUGRA, GMSB, AMSB etc
soft masses look like this: $m_{Q,U,D}^2 \sim \Lambda^2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

But exclusions look like this:

$$m_{Q,U,D}^{2} \sim \Lambda^{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{} \sim 1.5 \text{ TeV exclusions}$$

First two generations degenerate to reduce FCNC's an SU(2)_F ?

(F.Bruemmer, A.Weiler & MM) 1312.0935 (S.Abel & MM) 1404.1318

Flavour Gauge Messengers

Extend gauge mediation to include a gauged flavour group
 Explain Yukawas and SUSY breaking
 Fields break SU(3)_F and SUSY at the same time

• Fully dynamical origin in terms of Meta-stable SUSY breaking

How to Gauge flavour?

 $SU(3)_F$ is anomaly free and $G_{SM} \times SU(3)_F$ mixed anomalies vanish!

We can gauge it... but we still need to Higgs SU(3)_F

Gauge messengers=

Recipe:

- Gauge a group
 Higgs a group
- Fields that Higgs that group also break SUSY

Flavour? Non Abelian Froggat-Nielson mechanism SUSY breaking fields are Flavons!?

From GMSB From flavour gauge mess.

$$\delta m_{Q,U,D}^2 = -\frac{g_F^2}{16\pi^2} \left(\frac{F}{M}\right)^2 \begin{pmatrix} \frac{7}{6} & 0 & 0\\ 0 & \frac{7}{6} & 0\\ 0 & 0 & \frac{8}{3} \end{pmatrix}$$

Nett

 $m_{Q,U,D,\text{GMSB}}^2 \sim +\sum_i \frac{g_{SM,i}^4}{(16\pi^2)^2} \left(\frac{F}{M}\right)^2 \left(\begin{array}{ccc} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array}\right)$

$$m_{Q,U,D}^2 \sim \Lambda^2 \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -\# \end{array} \right)$$

a tachyonic soft term for stops

From flavour gauge mess. From GMSB 2/100 $\delta m_{Q,U,D}^2 = -\frac{g_F^2}{16\pi^2} \left(\frac{F}{M}\right)^2 \left(\begin{array}{ccc} \frac{7}{6} & 0 & 0\\ 0 & \frac{7}{6} & 0\\ 0 & 0 & \frac{8}{2} \end{array}\right)$

$$m_{Q,U,D,\text{GMSB}}^2 \sim +\sum_i \frac{g_{SM,i}^4}{(16\pi^2)^2} \left(\frac{F}{M}\right)^2 \left(\begin{array}{ccc} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array}\right)$$

Stick the model into an <u>NMSSM</u> spectrum generator (SPheno)

Squarks and Gluino

Higgs

Figure 2. A plot [Left] of the squark and gluino masses for model 1 with the NMSSM. [Right] a plot of Higgs mass versus g_F for the same range. $\lambda = 0.8$, $\kappa = 0.8$, $v_s = 1000$, $m_{H_d}^2 = m_{H_u}^2 = 10^5$, $\Lambda = \Lambda_F = 2.3 \times 10^5, M = 10^7, \tan \beta = 1.5.$

It turns out that this model can embed into magnetic SQCD too!

Field	$SU(\tilde{N})_{mag}$	$SU(3)_L \times SU(3)_R \to SU(3)_F$
Φ	1	$(3,\overline{3})$
φ		$(\overline{3},1)$
$ ilde{arphi}$		(1,3)

$$W_{\rm mag} = h {\rm Tr} \varphi \Phi \tilde{\varphi} - \mu^2 {\rm Tr} \Phi.$$

The usual rank condition breaks $SU(3)_F \rightarrow SU(2)_F$

$$\mu_{ij} = \begin{pmatrix} \mu & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \mu \end{pmatrix} \text{ and } \varphi^T = \tilde{\varphi} = \begin{pmatrix} \mu \\ \mu \\ 0 \end{pmatrix} \qquad F_{\Phi} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & h\mu^2 \end{pmatrix} \text{ such that } V_{\min} = |h^2 \mu^4|.$$

"Dynamical metastable flavour gauge mediation"

$$\delta m_{Q,U,D}^2 = -\frac{g_F^2}{16\pi^2} |h^2 \mu^2| \begin{pmatrix} \frac{8}{9} & 0 & 0\\ 0 & \frac{8}{9} & 0\\ 0 & 0 & \frac{20}{9} \end{pmatrix} + \dots$$

Perhaps we can explain Yukawas too!

Couple these fields together

leads to...
$$W = \frac{\lambda_u}{\Lambda} H_u Q \Phi U + \frac{\lambda_d}{\Lambda} H_d Q \Phi D$$

$$\Phi = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \langle X \rangle \end{pmatrix} \quad \text{leads to} \quad Y_u = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & Y_t \end{pmatrix}$$

(S.Abel & MM) 1404.1318

	Model 2											
Field	G_{SM}	$SU(3)_L \times SU(3)_R \to SU(3)_F$		Field	$SU(\tilde{N})_{mag}$	$SU(3)_L \times SU(3)_R \to SU(3)_F$						
\hat{Q}^f	$(2, rac{1}{6}, 3)$	$(\overline{3},1)$		Φ	1	$(3,\overline{3})$						
\hat{L}^f	$(2,- frac{1}{2},1)$	$(\overline{3},1)$		φ		ank 2 $(\bar{3}, 1)$						
\hat{H}_d	$(2,- frac{1}{2},1)$	(1,1)		$\tilde{\varphi}$		(1,3)						
\hat{H}_u	$(2, rac{1}{2}, 1)$	(1,1)		,	~							
\hat{D}^f	$(1, rac{1}{3}, \overline{3})$	(1,3)		Field	$SU(N)_{\rm mag}$	$SU(3)_L \times SU(3)_R \to SU(3)_F$						
\hat{U}^f	$(1,-rac{2}{3},\overline{3})$	(1,3)		M	1	$(3,\overline{3})$						
\hat{E}^f	(1, 1, 1)	(1 , 3)		ϕ		$(\overline{3},1)$						
$\hat{ u}^f$	(0, 1, 1)	(1 , 3)		$ ilde{\phi}$		(1,3)						

$$\varphi^{T} = \tilde{\varphi} = \begin{pmatrix} 0 \\ \mu \\ \mu \end{pmatrix} \quad \text{and} \quad \phi^{T} = \tilde{\phi} = \begin{pmatrix} 0 \\ 0 \\ \nu \end{pmatrix}$$

$$\frac{\phi}{\Lambda} \sim O(1) \quad \frac{\varphi}{\Lambda} \sim \epsilon \text{ leads to } Y_u \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & \epsilon & \epsilon \\ 0 & \epsilon & 1 \end{pmatrix}$$

Non-Abelian Froggat-Nielson <u>Many more model building avenues to explore further...</u>

(S.Abel & MM) 1404.1318

Extensions include: Brane realisations, Holographic realisations, Kutasov duality

Flavour changing neutral currents

 $K_{12}K_{11}^*$ — 1/5

— 1/3

 $\sim 57 eV$

4000

— 1

Model |: degenerate | st & 2nd

If extended to leptons, we expect Stau NLSP (Gravitino LSP)

For a natural cancellation these should be of the same order

$$m_z^2 = -2(m_{H_u}^2 + |\boldsymbol{\mu}|^2) + \dots$$

Massless stops at Mplanck, turn tachyonic at messenger scale, are turned positive by gluino

stops run positive
$$\delta m_{\tilde{t}}^2 = -\frac{8\alpha_s M_3^2}{3\pi} \log\left(\frac{\Lambda}{M_3}\right)$$

$$\int_{0}^{\delta m_{H_u}^2} \sim -\frac{3y_t^2 m_{\tilde{t}}^2}{4\pi^2} \log\left(\frac{\Lambda}{m_{\tilde{t}}}\right) \qquad (+) + (-) \sim 0$$
Reduces fine tuning on the Higgs

21 - 26 JULY 2014, MANCHESTER, ENGLAND

THE 22ND INTERNATIONAL CONFERENCE ON SUPERSYMMETRY AND UNIFICATION OF FUNDAMENTAL INTERACTIONS

or is it?!

Moritz McGarrie

Additional slides

"Large At Without the Desert"

A.Abdalgabar, A.Cornell, A.Deandrea, MM 1405:1038

$\mathbf{a_u} \approx \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}$	0 0 0	$\begin{pmatrix} 0\\ 0\\ a_t \end{pmatrix}$,	$\mathbf{a_d} \approx$	$\begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}$	0 0 0	$egin{array}{c} 0 \ 0 \ a_b \end{array}$,	$\mathbf{a_e} \approx$	$\begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}$	0 0 0	$\begin{pmatrix} 0\\ 0\\ a_{\tau} \end{pmatrix}$,
--	-------------	---	---	------------------------	---	-------------	--	---	------------------------	---	-------------	--	---

At runs negative

IR typically ends up negative a few 100 GeV
Not sufficient to the get correct Higgs mass....
Question: Can we accelerate its running?

The Higgs mass 126 GeV

The MSSM at one-loop $m_h^2 \simeq m_z^2 \cos^2(2\beta) + \frac{3}{(4\pi)^2} \frac{m_t^4}{v_{ew}^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{X_t^2}{m_{\tilde{t}}^2} (1 - \frac{X_t^2}{12m_{\tilde{t}}^2}) \right]$

$$126^2 = 91^2 + 81^2$$

• Radiative corrections are same order as tree level piece

- corrections run logarithmically in SUSY
- MSSM case implies either heavy stops or large X_t=A_t +...
- Needs I-2 TeV At or stops to get Higgs mass correct

 $X_t = A_t - \mu \cot \beta$

stop mixing

In 5D you can get large At!

"Power law running"

An extra dimension of radius R. Additional Kaluza Klein modes enter RGEs @ Q> I/R

Large At: Independent of the details of SUSY breaking

Split families: Locate different generations in brane or bulk aesthetically Natural! m_{coll}^2

 $m^2_{(Q,U,D)_3} << m^2_{(Q,U,D)_{1,2}}$

Power law running $\alpha^{-1}(Q) = \alpha^{-1}(m_z) - \frac{b}{2\pi}\log\frac{Q}{m_z} + \frac{\tilde{b}}{2\pi}\log\frac{Q}{m_{KK}} - \frac{\tilde{b}}{2\pi}(\frac{Q^d}{m_{KK}} - 1)c_d$

(T.Taylor, G.Veneziano) Phys. Lett. B212 (1988) (K.Dienes, E.Dudas T. Gherghetta) 9803466 (K.Dienes, E.Dudas, T. Gherghetta) 9806292

> "The finite power-law corrections to the Yukawa couplings have the right sign and magnitude to cancel the tree-level terms. This can help to explain the hierarchical structure of the fermion Yukawa couplings."

(A.Abdalagbar, A.Cornell, A.Deandrea, MM) 1405:1038

"Perhaps we can use this to accelerate the evolution of At?"

4+d dimensional MSSM

Always unify
 No proton decay
 Explains flavour
 Large At

Figure 1. Running of the inverse fine structure constants $\alpha^{-1}(E)$, for three different values of the compactification scales 10 TeV (top left panel), 10³ TeV (top right), 10⁵ TeV (bottom left) and 10¹² TeV (bottom right), with M_3 of 1.7 TeV, as a function of $\log(E/GeV)$.

Figure 2. Running of Yukawa couplings Y_i , for three different values of the compactification scales: 10 TeV (top left panel), 10³ TeV (top right), 10⁵ TeV (bottom left) and 10¹² TeV (bottom right), with $M_3[10^3]$ of 1.7 TeV, as a function of log(E/GeV).

Figure 3. Running of trilinear soft terms $A_i(3,3)(E)$, for three different values of the compactification scales 10 TeV (top left panel), 10^3 TeV (top right), 10^5 TeV (bottom left) and 10^{12} TeV (bottom right), with $M_3[10^3]$ of 1.7 TeV, as a function of log(E/GeV).

Larger gluino gives larger At

Moritz McGarrie

Thanks for listening!

Conclusions

- Traditional models are in bad shape
 Perhaps it is time to panic?
- Natural SUSY is motivated from bottom up
- These can have exciting top-down motivations too
 - It does mean sacrificing minimality!