

Non-SUSY Results from CMS

SUSY2014: The 22nd International Conference on Supersymmetry and Unification of Fundamental Interactions 21 - 26 July 2014, Manchester, England

Sadia Khalil on behalf of CMS Collaboration

Theorist Maps

Hitoshi Murayama

Vast variety of NP Searches

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

Outline

• Long lived particles

Standard Model backgrounds

Standard Model backgrounds

Non-SUSY CMS Results - Sadia Khalil (KSU, Manhattan, USA) - SUSY2014, Manchester, UK

 $m_{\rm T} = \sqrt{2p_{\rm T}^{\ell} E_{\rm T}^{\rm miss} (1 - \cos \Delta \phi_{\ell\nu})}$

Jet Substructure

- The New Physics searches often imply to look for massive objects
 - boosted decay products => merged jets

- Standard jet reconstruction with Anti-kt clustering algorithm, distance parameter 0.5 (ak5)
- Use fat jets tagging algorithms developed for Cambridge/Aachen jet clustering algorithm, with distance parameter 0.8 (CA8), 1.5 (Hep top tagger)

See details by <u>Zeynep Demiragli</u> and <u>Rebekka HOEING</u> at Alternate theory sessions

Resonances

- Powerful, model-independent probe to new physics
 - Simple Strategy: Reconstruct invariant mass and look for "bump"
 - Bump at m_{ff} > m_Z or m_H ➡ New Physics!
- Top quark resonances in BSM Models
 - Extended gauge sectors: Z', W' and G' bosons
 - Complex Strategy: Use boosted techniques to identify t, W, Z, H along with b and reconstruct the resonance mass

$q^* \rightarrow q + \gamma NEW!$

- First CMS γ+jet resonance search with full 8 TeV data [arXiv:1406.5171, submitted to PLB]
 - Interpretations for excited quarks with varied coupling strength
- Photon+Jets:
 - ≥1 photon + ≥1 jet: p⊤>170 GeV
 - ΔR(γ, jet) > 0.5
 - Δη(γ, jet) < 2.0, Δφ(γ, jet) > 1.5

 Exclude masses below 3.5 TeV at 95% C.L for unit couplings to their SM partners

t*→t + g

- Rich final state: $tt + \ge 2$ jets
 - Do not reply on simulate of SM bkg
- Lepton+jets channel:
 - isolated lepton, \geq 6 jets, \geq 1 b-jet
 - mass reconstruction: M_{t+g}=m(lvbg)=m(qqbg)
 - background: fit to mass spectrum
- Dilepton+jets channel:
 - 2 b-jets, 2 light-jets
 - fit background using jet p, spectrum
- Exclusion limits:
 - I+jets: Exclude spin 3/2 t* resonances below 790 GeV (738 GeV expected)
 - dilepton: 717 GeV (754 GeV expected)

[JHEP 06, 125 (2014)]

- Threshold lepton+jet analysis
 - Analysis technique similar to tt cross section measurement
 - low sensitivity at high mass: merged final state objects
- Boosted lepton+jet analysis
 - Non-isolated lepton selection and $N_{\text{Jets}} \ge 2$
- Boosted all-hadronic analysis
 - Based on dijet topology
 - Resolve substructure of jets: require 2 top-tagged jets
- Combined limits
 - Z'→tt (1% width): M_{z'} < 2.1 TeV
 - Kaluza-Klein gluons: M_{g*} < 2.5 TeV

$W' \rightarrow I + v$

Lepton+MET

- lepton + jets selection:
 - 1 electron(muon) : p_T >100(45) GeV
 - 0.4 < lepton p_T/MET < 1.5
 - Δφ(I,MET) > 0.8π
- Look for Jacobian-Peak in $M_{\rm T}$

EXO-12-060

Interference with SM W boson

- No interference: SSM W'
- Constructive: Coupling of W' has OS to coupling of W to f_L (SSMO)
- Destructive: Coupling of W' has SS to coupling of W to f_L (SSMS)

95% CL lower mass limit (in TeV)

MODEL	OBS	EXP
W'ssm	3.35	3.40
W'	3.60(3.10)	3.60(3.20)

W′→t+b

- Semi-leptonic analysis t→W+b→(lv)+b
 - lepton + jets selection:
 - One isolated lepton (e, μ), P_T > 50 GeV
 - 2 jets: P_{T1,2} > 120, 40 GeV, at least one b-tag
 - Background reduction:
 - **P**_{Ttop} > 85 GeV
 - $130 < m_{top} < 210 \text{ GeV}$
 - Exclusion limits:
 - M(W'_R) > 2.03 TeV (2.09 TeV expected) at 95% C.L.
 - Limits for left- and right-handed couplings

[JHEP 05,108(2014)]

W′→t+b

bt→W+b→(q<mark>q)</mark>+b

B2G-12-009

- All Hadronic analysis
 - Top Candidate jet:
 - PT > 450 GeV with CMS top-tagging algo

inverted to define

similar kinematics

control regions with

- N-subjettiness
- Subjet b-tagging
- b candidate jet:
 - PT> 370 GeV using CSVM b-tagging algo
 - m < 70 GeV
- $|\Delta y|_{tb} < 1.6$
- Exclusion limits:
 - M(W'_R) > 2.00 TeV (1.99 TeV expected) at 95% C.L.
 - Limits for left- and right-handed couplings

$W' \rightarrow WZ \rightarrow IvII$

EXO-12-025

- Fully leptonic final state
 - Select Z and W candidates
 - 4 final states: evµµ, evee, µvee, µvµµ
 - Background Reduction:
 - M_{3I} >120 GeV: Events close to Z mass
 - $\Delta R(W, Z) > 0.3$: W from converted photons
 - Search for bump in Mwz spectrum
 - Neutrino p_z from W mass constraint, optimize $L_T = \Sigma p_T$ (I) and M_{WZ} for each mass hypothesis
 - Exclusion limits:
 - M(W') are excluded for range [170, 1450] GeV
 - Low-scale technicolor models with the chosen parameters $M(\pi_{TC}) = 3/4 M(\rho_{TC})$ 25 GeV
 - Exclude ρ_{TC} for range [170, 1125] GeV

Vector-like quarks

 Top Partners cancels the top loop divergence in m_H and are light in all Natural Theories
 See details by <u>Rebekka</u>

$$\Delta \geq \frac{\delta m_{H}^{2}}{m_{H}^{2}} \simeq \left(\frac{125 \text{ GeV}}{m_{H}}\right)^{2} \left(\frac{M_{P}}{400 \text{ GeV}}\right)^{2}$$

See details by <u>Rebekka</u> <u>HOEING</u> at Alternate theory session on Tue, July 22nd

Light Higgs plus Low Tuning need light Partners

susy bosonic partners(stops)

X-dim, Little Higgs, Composite Higgs... fermionic partners

> http://arxiv.org/abs/1205.0013 http://arxiv.org/abs/1211.5663

- What is "vector-like" about them?
- Charged current:
 - SM chiral quarks:
 - VLQ:

$$J^{\mu+} = J_L^{\mu+} = \bar{u}\gamma^{\mu}(1-\gamma^5)d = V - A$$
$$J^{\mu+} = J_L^{\mu+} + J_R^{\mu+} = \bar{u}\gamma^{\mu}d = V$$

 $T_{5/3} \rightarrow t+W$

[PRL 112, 171801 (2014)]

Same Sign dilepton

- ee, eµ, µµ channels
- Background reduction: Vetos Quarkonia, Dilepton and Trilepton Z boson
- Possibility to have merged jets at high mass
 - Count constituents, taking into account subjets from W- and topjets: N_c ≥ 7
- Reconstruct MT5/3 for HT > 900 GeV
- Exclusion limits
- MT5/3 < 800 GeV (830 GeV expected)

T→bW, tZ, tH

[PLB 279, 149 (2014)]

- Inclusive lepton
 - Single-lepton channel
 - Hadronic W-tag and top-tagging
 - optimized for best overall sensitivity
 - BDT trained with BR of 0.50 : 0.25 :
 0.25 = bW : tZ : tH
 - Multi-lepton channel
 - Binned likelihood fir for 12 different channels in high ST regions
 - Categories: OS dilepton (On/Off Z), SS dilepton and Trileptons
 - Exclusion limits
 - A mass bound of [687, 782] GeV is set at 95% CL for all possible BR

$T \rightarrow bW, tZ, tH$

• All hadronic analysis in tH, H→bb channel

- Special substructure analysis using subject b-tagging
 - 1 HEP top-tagger jet and 1 or 2 H→bb jets
 - $H_T > 720$ GeV, subjets in H_T have p_T>150 GeV
 - In addition to double b-tagging, require m_H>60 GeV
 - **Exclusion** limits •
 - A mass bound of [687, 782] GeV is set at 95% CL for all possible BR

B2G-14-002

$T \rightarrow bW, tZ, tH NEW!$

Hadronic and leptonic analysis in tH, H→γγ channel

Event Selection

Variable	Hadronic channel	Leptonic channel
p_T^{lead} photon	$> \frac{3}{4}m_{\gamma\gamma}$ GeV	$> \frac{1}{2}m_{\gamma\gamma}$ GeV
$p_T^{sublead}_{photon}$	35 GeV	25 GeV
n _{jets}	≥ 2	≥ 2
$H_{ m T}$	$\geq 1000 { m GeV}$	\geq 770 GeV
leptons	0	≥ 1
b tags	≥ 1	-

- Strategy: Exploit the narrow resonance of $H \rightarrow \gamma \gamma$, by fitting the peak in Myy distribution and $S_T > 1$ TeV
- Search is limited by statistics, yet a very powerful analysis for Run 2

B→tW, bZ, bH

Single, di, and multi-lepton analyses

- lepton selection and high p_T jets
- Extract limits from S_T or M_B variables
- Single-lepton: classify events according to hadronic W-tag
- multi-leptons: different search regions in SS and OS lepton pairs and S_T bins
- OS dilepton: Reconstruct the B mass
- Exclusion limits
 - Limits on B mass between 520-785 GeV

e/µ analysis

Leptoquarks

- New bosons that carry both lepton and baryon number are predicted by many BSM theories: GUTs, Composite models, Technicolor
- Dominant processes for LQ pair production at LHC
 - gluon-gluon fusion & quark-antiquark annihilation
- Exact properties (spin, weak isospin, electric charge) depend on specific model: direct searches at the LHC → Buchmuller-Ruckl-Wyler model (BRW)
 - interact with SM fermions through coupling λ
 - preserves baryon and lepton number
 - couple to a single chirality and generation of SM fermions at a time
- BR, β is generally unknown, but {II,Iv,vv} + qq maximally produced for β = 1, 0.5, and 0

 $BR(LQ \rightarrow Iq) = \beta$ $BR(LQ \rightarrow vq) = 1-\beta$

LQLQ	β^2	$\beta(1-\beta)$	$(1-eta)^2$
1st gen	ee + jj	$e\nu + jj$	n/a
2nd gen	$\mu\mu + jj$	$\mu u + jj$	n/a
3rd gen	au au otbb,tt	n/a	$ u \nu + bb,tt $

LQ1 and LQ2 in Iljj, lvjj NEW!

LQ

LO

- Ilji analysis: $\beta = 1$
 - M_{II}, M_{II}
 - $S_T^{\parallel} = p_T(I_1) + p_T(I_2) + p_T(j_1) + p_T(j_2)$
- Ivjj analysis: $\beta = 0.5$
 - MET, Mıj
 - $S_T^{IV} = p_T(I) + MET + p_T(j_1) + p_T(j_2)$

Selections are optimized for each signal mass point including M_{li} and S_T

Exclusion limits

95% CL lower mass limit (in GeV)

	β = 1	β = 0.5
LQ1	830	640
LQ2	1070	785

Non-SUSY CMS Results - Sadia Khalil (KSU, Manhattan, USA) - SUSY2014, Manchester, UK

EXO-12-041, EXO-12-042

LQ3 and stop in TTbb NEV

• Selection

- Require one τ_l and one τ_h
- e, μ : $p_T > 30$ GeV and veto 2nd lepton
- $\tau_h: p_T > 50 \text{ GeV}$

• Strategy

• $S_T = p_T(I) + p_T(\tau_h) + p_T(j) + p_T(b)$

- LQ3 analysis
 - \geq 2 jets, \geq 1 b-jet, M(τ_h , j) > 250 GeV
- Stop analysis
 - \geq 5 jets, \geq 1 b-jet

LQ3 in TTT

Category A

- Require one μ and one tight τ_h with same sign
- \geq 2 jets, S_T > 400 GeV
- Category B
 - Require one one μ and one loose τ_h
 - \geq 3 jets, S_T > 400 GeV, MET > 50 GeV
 - Veto evt of category A

• Selections are optimized for each signal mass point for $p_T(\tau_h)$ and S_T

See details by <u>Bhawana Gomber</u> in Particle Cosmology session on Monday, Jul 21st

Dark Matter

- Strong astrophysical evidences for the existence of DM
- No unambiguous direct detection so far
- Production at colliders
 - DM produced in cascade decays from heavier new states: SUSY, Higgs portal
 - Pair production: higher-order diagrams provide probe recoiling against DM pair

- Simplified Models: Only SM + DM sector
 - Mediator and interactions specified explicitly
 - More parameter space to scan

- Effective Theories: Collapse SM-DM interaction in effective 4-point operator
 - Parameters: m_{DM} , EFT scale $\Lambda = M$

$$I_* = \frac{M}{\sqrt{g_\chi g_q}}$$

Translate to DM-nucleon cross-section

$$\sigma(\chi N \to \chi N) \sim \frac{g_q^2 g_\chi^2}{M^4} \mu_{\chi N}^2$$

Mono-X Searches EXO-12-048, EXO-12-047, EXO-13-004

0

- Large MET from DM recoils against a jet/γ from QCD ISR
- MET > 250 GeV
- 1 central jet $p_T > 110 \text{ GeV}$
- Iepton Veto
- Bkg: $Z \rightarrow vv$ and $W \rightarrow Iv$ from $Z \rightarrow \mu\mu$

- MET > 140 GeV
- γ p_T > 145 GeV
- Veto: lepton and hadronic activity
- Bkg: Z(→vv) γ, W(→lv) γ,
 W→ev, QCD, beam halo

Mono-lep

- DM pair produced along with a recoiling W boson
- Interference is destructive if coupling is the same
 - $uu \rightarrow \chi^0 \chi^0 = dd \rightarrow \chi^0 \chi^0$
 - p_T (e / μ) > 100 / 45 GeV
 - $0.4 < \text{lepton } p_T/\text{MET} < 1.5$
 - Δφ(e/μ, MET) > 0.8 π
 - Bkg: W($\rightarrow \ell v$)

Mono-X Searches

- Limits are set on EFT scale ∧ using effective operators at 95%CL ⇒ limits on elastic DMnucleon cross section versus DM mass
- Complementary, unique, coverage at low mass and strong sensitivity for spin-dependent interactions

Mono-top Search

DM preferentially couples to heavy quarks through FCNC diagrams

Selection

- ≥ 3 jets, ≥ 1b-jet
- MET > 350 GeV
- Veto leptons
- Exclusion limit
 - Scalar DM < 327 GeV
 - Vector DM < 655 GeV

B2G-12-022

Di-top +MET Search NEW! B2G-13-004

 $\mathcal{L}_{\rm int} = \frac{m_q}{M^3} \bar{q} q \bar{\chi} \chi$

- EFT scalar interaction least constrained
 - quark mass dependence top \rightarrow coupling enhanced
- Selection
 - 2 electrons/muons
 - ≥ 2 jets
 - MET > 320 GeV
 - Veto leptons
 - Selections on scalar sums of leptons and jets, and lepton opening angle
- Exclusion limit
 - σ > 0.09 (0.24) pb excluded for m_{DM} = 50 (1000) GeV at 95% CL

Long lived particles

- Searches for events where particles are produced or decay at a significant distance from the primary interaction
 - → Models: Hidden valley, weakly RPV SUSY, split SUSY with long-lived gluinos, Z' decays, little Higgs
- Small SM bkgs due to significant lifetime
- Standard triggers & reconstruction are not optimal for these objects
 - ⇒ a large amount of work is necessary to develop custom selections

simulated displaced lepton event

Displaced Dilepton: e, µ NEW! B2G-12-024

• Model:

• $\tilde{t} \tilde{t} \rightarrow bl bl with lifetimes (ct ~ 100 \mu m - 2 cm)$

Selection:

- OS and isolated e and μ with no common vertex
- Control regions: SS & non-isolated regions to derive QCD background estimate
- Validation regions: control regions with smaller d0

Event Source	$0.02 \text{ cm} < d_0 < 0.05 \text{ cm}$	$0.05 \text{ cm} < d_0 < 0.1 \text{ cm}$	$ d_0 > 0.1 \text{ cm}$
Total expected background	$18.0 \pm 0.5 \pm 3.8$	$1.01 \pm 0.06 \pm 0.30$	$0.051 \pm 0.015 \pm 0.010$
Observation	19	0	0
$pp \rightarrow \tilde{t}_1 \tilde{t}_1^*$			
M = 500 GeV, $\langle c\tau \rangle$ = 1 mm	$30.1 \pm 0.7 \pm 1.1$	$6.54 \pm 0.34 \pm 0.24$	$1.34 \pm 0.15 \pm 0.05$
$M = 500 \text{ GeV}, \langle c\tau \rangle = 1 \text{ cm}$	$35.3 \pm 0.8 \pm 1.3$	$30.3 \pm 0.7 \pm 1.1$	$51.3 \pm 1.0 \pm 1.9$
M = 500 GeV, $\langle c\tau \rangle$ = 10 cm	$4.73 \pm 0.30 \pm 0.17$	$5.57 \pm 0.32 \pm 0.20$	$26.27 \pm 0.70 \pm 0.93$

400 450 500 550 600 650 700

10⁻¹

350

• Best results at $c\tau \sim 2$ cm with exclusion of m(t \sim) < 790 GeV at 95% CL

750 800

stop mass [GeV]

Summary and Conclusion

- We looked all over the place
 - Singly produced resonances up to ~ 5 TeV
 - Pair produced new particles up to ~ 1.5 TeV
 - Vast diversity of signatures
- No new physics found anywhere we looked
 - Lots of progress in exploring difficult regions of parameter space with complicated/boosted final states
 - Devil's in the details ⇒ many places left to hide!
- Let's do it all over again next few years a higher energy and larger luminosity !!!

Backup

Samples and Uncertainties

• Generators:

- Background samples
 - Ttbar/Single t : MadGraph/POWHEG + PYTHIA 6 (Z2*)
 - W/Z+jets, ttW, ttZ : MadGraph + PYTHIA
 - WW/WZ/ZZ, ttH : PYTHIA
- Triggers:
 - Single lepton/dilepton, Lepton+3 central PFjets, H_T
 - All efficiencies studied on MC and data, selection tuned to be on the plateau

• Systematics:

- All HLT, reconstruction and selection efficiencies and data/MC differences
- Luminosity (4.4%)
- JES (~5% eta and p_T dependent), JER
- When rely on MC : factorization and renormalisation scale, jet-parton matching scale, dedicated systematic samples
- When estimation from data: Uncertainties of the methods, data/MC, closure tests
- Analysis specific

- Signal samples
 - MadGraph/COMPHEP interfaced with PYTHIA

Black Hole Search arXive: 1303.5338

• Selection:

- γ , e, μ and jets $p_T > 50 \text{ GeV}$
- Sum p_T of final state products: •

 $S_T = \Sigma p_T^l + p_T^\gamma + \Sigma p_T^{jet} + E_T^{miss}$

- **Categorize into number jets:** •
 - Shown here are the two extremes:
 - inclusive $N \ge 2$ (top) •
 - inclusive $N \ge 10$ (bottom).
- **Exclusion limits:** •
 - Masses below 4.3 to 6.2 TeV are • excluded, depending on model assumptions

