SUSY Searches at ATLAS latest results and prospects

Monica D'Onofrio

University of Liverpool

(on behalf of the ATLAS collaboration)

SUSY14, Manchester 23/7/2014

SUSY particles production at the LHC

SUSY Phenomenology

R-parity = $(-1)^{3(B-L)+2s}$

If R-parity is conserved (RPC)

→ sparticles produced in pairs → Lightest Supersymmetric Particle (LSP): candidate for Dark Matter, lead to high E_T^{Miss} final states Typical LSP: lightest neutralino ($\tilde{\chi}_1^0$), gravitino (G)

If R-parity is violated (RPV)

→ LSP no longer stable, rich and diverse phenomenology depending on the involved parameters (λ , λ ', λ '')

- Prompt or Long Lived (LL) particles could be produced in RPV and RPC scenarios. Few examples of LL:
 - In RPV: if lambda couplings are very small
 - In RPC: If very heavy squarks mediate gluinos decay (strong virtuality):
 - ▶ Long-lived gluinos \rightarrow R-hadrons (eg. Split SUSY)

SUSY search strategy

→ Search strategy designed to provide coverage for a broad class of SUSY models

	Long- Lived				
R-Pa	rity-Conser	ving	R-Parity Violation		
Strong 1 ^{st,} 2 nd gen. squarks, gluinos	3 rd gen. stop, sbottom	Weak EWK- inos, sleptons	RPC prod. RPV decays	RPV prod. RPV decays	Various ranges of lifetime

Only most recent results presented here! More in parallel sessions: Talks from M. Fiascaris, E. Guido, A. Kuhl, D. Miller, Z. Rurikova, D. Xu

For each search, a number of signal regions is optimized based on a variety of models

Step 1:

understand SM background contributions

 σ [pb] 1011 ATLAS Preliminary Run 1 $\sqrt{s} = 7, 8$ TeV 10⁶ LHC pp $\sqrt{s} = 7$ TeV LHC pp $\sqrt{s} = 8$ TeV 10^{5} Theory Theory 35 pb⁻¹ Data Data 35 pb-1 10^{4} 10³ 20.3 fb 20.3 fb 10² 0 4.6 fb 20.3 fb⁻¹ 20.3 fb 4.7 fb⁻¹ 10¹ 2.0 fb 1 20.3 fb⁻¹ 20.3 ft 10^{-1} H_{ggF} pp w Ζ tī t_{t-chan}ww+wz WW Wt WΖ ΖZ HVBF tŦW tτΖ total total to tai to ta i total total total total total tota tota

Standard Model Total Production Cross Section Measurements Status: July 2014

SM processes measured at ATLAS with extremely high precision

• Step 1:

- understand SM background contributions (*)
- Search kinematic phase space usually different from SM measurements (tail of distributions at high p_{T})

(*) For long-lived particle searches, need more specialized techniques

'Semi' data-driven methods

- Normalisation done in dedicated Control Regions (CR) enriched in specific bkg. E.g.: top pair production, W+jets...
- Compromise between closeness to SR, statistics and handling of uncertainties

Validation of Background estimates in dedicated samples (VR)

• Step 2:

For each search, a number of signal regions is optimized based on:

'Full' Physics models

- SUSY breaking @ high scale \rightarrow specific spectrum at EWK scale
- mSUGRA, Gauge Mediated Symmetry Breaking, Anomalous MSB, extended MSSM etc.

• Step 3:

 Define selections based on various discriminating quantities

• Ex: MET, Meff = E_T^{Miss} + Scalar Sum of jets (leptons) p_T , transverse mass m_T , mT2, amT2

- Define SRs, which are usually 'blind'
 - Cut and count analyses or fit on shape of single or multiple discriminating variables (especially for searches with low S/B)
- After bkg estimates in CR and validation in VR
- \rightarrow Proceed to unblinding data in SR
 - If excess is found, champagne!
 - ▶ If not ⊗, set 95% Confidence Level limits

Inclusive searches with no leptons

L dt = 20.3 fb

Multi-jets

W+jets tt(+X) & single top

7+iets

Dibosor

Data 2012 (\s = 8 TeV)
 SM Total

 $\tilde{g}\tilde{g}$ m(\tilde{g})=1200,m($\tilde{\chi}_{+}^{\pm}$)=1150,m($\tilde{\chi}_{-}^{0}$)=66

Define various signal regions based on:

- Minimum Jet multiplicity (2 to >=6j)
- Effective Mass ($M_{eff} = E_T^{Miss} + Sum p_T$ jets)
 - Thresholds from 800 GeV to 2.2 TeV
- But also: presence of boosted W→qq', also with decay products clustered in the same jet

Events / 450 GeV

10²

10

ATLAS

SR - 2j (W)

Monica D'Onofrio, SUSY14, Manchester

July 23, 2014

Results

Monica D'Onofrio, SUSY14, Manchester

 $\tilde{\chi}_1^0$

1407.0603

Tau-enriched final states: 1τ , 1τ +1e/ μ , 2τ

Gluino-mediated third generation

- Gluinos decaying via stop/sbottom offer a very rich phenomenology. Various analyses exploiting that:
 - 0 lepton + multijets (7-10j): 1308.1841
 - Same sign leptons + jets (b-jets): <u>arXiv:1404.2500</u>
 - 0/1 lepton + 3-bjets: 1407.0600
 - O lepton: >= 4 jets and >= 7 jets regions (at least 3 b-jets), with Meff cuts between 1 TeV and 1.5 TeV and high ETMiss
 - I lepton: >= 6 jets (at least 3 b-jets), with Meff > 700-900 GeV, high ETMiss and high mT

SM Backgrounds: Irreducible Reducible ttbar+bbar ttbar+jets (MC-driven) (data-driven)

Results

- Good agreement between data and SM background expectations
- Constraints on gluino mass around 1.3-1.4 TeV for low LSP

 $\widetilde{g}\widetilde{g}$ production, $\widetilde{g} \rightarrow tt + \widetilde{\chi}_{*}^{0}$, $m(\widetilde{q}) >> m(\widetilde{g})$

0 and 1 lepton + 3 b-jets channels

ATLAS

m(Ĩ₀) [Ge√] 1000

800

600

L^{int} = 20.1 fb⁻¹, \stackstrain{s}{s} = 8 TeV

Expected limit $\pm 1 \sigma_{exp}$

Observed limit $\pm 1 \sigma_{\text{theory}}^{\text{SUSY}}$

All limits at 95% CL

Summary: Stop via gluino pair production

<u>ATLAS-CONF-2014-037</u>

Meta-stable gluinos

 travel a measurable distance in the detector before decaying to quarks (or a gluon) and a neutralino
 _{g̃→qī χ̃1/g χ1}

Monica D'Onofrio, SUSY14, Manchester

July 23, 2014

Search strategy

- Usually target lightest eigenstate (t1, b1) $\begin{pmatrix} \tilde{t}_1 \\ \tilde{t}_2 \end{pmatrix} = \begin{pmatrix} \cos \theta_t & \sin \theta_t \\ -\sin \theta_t & \cos \theta_t \end{pmatrix} \begin{pmatrix} \tilde{t}_L \\ \tilde{t}_R \end{pmatrix}$
- Several decay modes possible
 - For stop:

For decay modes involving charginos, phenomenology depends on ΔM charginoneutralino and ΔM stopchargino

- For sbottom:
 - Final states b+neut1, b+neut2 and t+chargino
 - In case of b+neut2: neut2 \rightarrow Z / higgs + neut1

Direct Sbottom production

Direct stop: 0 lepton + 4-6 jets

- Three sets of signal regions targeting final states with 1 or 2 fully-hadronic tops:
 - 6+ jets: two resolved tops (SRA)
 - 4/5+ jets: merged W or top system in large R jets (R=0.8, 1.2) (SRB - Boosted region)
 - 5+ jets: sensitive to b+charg decays (SRC)
- Main background:

Monica D'Onofrio, SUSY14, Manchester

406.1122

 $\tilde{t} \rightarrow t \tilde{\chi}$

m(t ̃) [GeV

 $\rightarrow bW$

n(X°⁰) [GeV]

 $\widetilde{t_{t}t_{1}}$ production, $\widetilde{t_{1}} \rightarrow t \widetilde{\chi}_{1}^{0}$ or $\widetilde{t_{1}} \rightarrow b \widetilde{\chi}_{1}^{\pm}$ (m_{at} = 2 × m_v^o)

Direct stop: 0 lep + 1-2jets (c-jets)

 $\tilde{t} \to c \tilde{\chi}^0$ $\tilde{t} \to b f f' \tilde{\chi}^0$

Monica D'Onofrio, SUSY14, Manchester

- If ∆M(stop-LSP)<m(W)
- Use hard ISR jet to boost the stop system to trigger and separate signal from background. Two selections:
 - If △M(stop-LSP) < 20 GeV very low, the charm are too soft to be efficiently detected → 'mono-jet like' signature
 - 1 to 3 jets, high pT leading jet, large MET
 - → Selection potentially sensitive to any 'compressed scenario'
 - If ~20<∆M(stop-LSP)<m(W), in case of stop in charm+LSP, c-jets might have sufficient pT to be detected and tagged
 - Ask for ≥4 jets, some charm tagged, large MET, high p_T untagged leading jet

n(X"0) [GeV]

 $\tilde{t} \rightarrow t \tilde{\chi}_1^0$ (on-shell top

m(t) [GeV]

 $\tilde{t} \rightarrow bW \tilde{\chi}_1^0$ (off-shell top) $b \tilde{\chi}_1^+ \rightarrow bW \tilde{\chi}_1^0$

Charm-tagging: Multivariate algorithm define anti-b and anti-light discriminators

anti
$$-b \equiv \log\left(\frac{P_c}{P_b}\right)$$
 anti $-u \equiv \log\left(\frac{P_c}{P_u}\right)$

0 lep + 1-2jets (c-jets): results

Main Backgrounds:

- W+jets, Z+jets estimated from W(µv), Z(µµ), W(ev)+jets control selections
- Top pairs: from MC for mono-jet like selection, from an eµ control region for the charm tagged selection

- Sensitivity of the monojet-like part independent of stop decays (soft b- c-jets, leptons)
- Similar reach for compressed scenarios in case of sbottom pair production

Direct stop: 1 lepton + >=4 jets

- 'Hard' (>25 GeV) and 'soft' (7-50 GeV) leptons
- 15 SRs sensitive to stop in various scenarios:
 - t+neut1 (stealth and high mass), 3- and 4-body decay
 - b+charg with various mass hierarchy hypothesis
- Use several complex discriminating quantities
 - Preselection: 1l + 4 or more jets, >= 1 b-jet, MET
 - ex. mT, amT2, large R jets

Cut and count and shape fit (e.g. based on ETMiss - mT)

407 0583

Signal

Regions

bCa_med

SR	Signal scenario	Exclusion technique
tN_diag	$\tilde{t}_1 \rightarrow t \tilde{\chi}^0_1, m_{\tilde{t}_1} \gtrsim m_t + m_{\tilde{\chi}^0_1}$	shape-fit $(E_{\rm T}^{\rm miss}$ and $m_{\rm T})$
tN_med	$\tilde{t}_1 \rightarrow t \tilde{\chi}^0_1, m_{\tilde{t}_1} \sim 550 \text{GeV}, m_{\tilde{\chi}^0_1} \lesssim 225 \text{GeV}$	cut-and-count
tN_high	$\tilde{t}_1 \rightarrow t \tilde{\chi}^0_1, m_{\tilde{t}_1} \gtrsim 600 {\rm GeV}$	cut-and-count
tN_boost	$\tilde{t}_1 \to t \tilde{\chi}^0_1, m_{\tilde{t}_1} \gtrsim 600 {\rm GeV},$ with a large- R jet	cut-and-count
bCa_low	$\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}, \Delta M \lesssim 50 {\rm GeV}$	shape-fit (lepton $p_{\rm T})$
	$\tilde{t}_1 \rightarrow b f f' \tilde{\chi}_1^0$	
bCa_med	$\tilde{t}_1 \rightarrow b \tilde{\chi}_1^\pm, 50 {\rm GeV} {\lesssim \Delta M} \lesssim 80 {\rm GeV}$	shape-fit (lepton $p_{\rm T})$
	$\tilde{t}_1 \rightarrow b f f' \tilde{\chi}_1^0$	
bCb_med1	$\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}, \Delta m \lesssim 25 \text{GeV}, m_{\tilde{t}_1} \lesssim 500 \text{GeV}$	shape-fit (am_{T2})
bCb_high	$\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}, \Delta m \lesssim 25 \text{GeV}, m_{\tilde{t}_1} \gtrsim 500 \text{GeV}$	shape-fit (am_{T2})
bCb_med2	$\tilde{t}_1 \rightarrow b \tilde{\chi}_1^\pm, \Delta m \lesssim 80 {\rm GeV}, m_{\tilde{t}_1} \lesssim 500 {\rm GeV}$	shape-fit $(am_{\rm T2} {\rm ~and~} m_{\rm T})$
bCc_diag	$\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}, \ m_{\tilde{t}_1} \gtrsim m_{\tilde{\chi}_1^{\pm}}$	cut-and-count
bCd_bulk	$\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}, \ (\Delta M, \Delta m) \gtrsim 100 \text{GeV}, \ m_{\tilde{t}_1} \lesssim 500 \text{GeV}$	shape-fit $(am_{T2} \text{ and } m_T)$
bCd_high1	$\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}, (\Delta M, \Delta m) \gtrsim 100 \text{GeV}, m_{\tilde{t}_1} \gtrsim 500 \text{GeV}$	cut-and-count
bCd_high2	$\tilde{t}_1 \rightarrow b \tilde{\chi}_1^\pm, \Delta M \gtrsim 250 {\rm GeV}, m_{\tilde{t}_1} \gtrsim 500 {\rm GeV}$	cut-and-count
3body	$\tilde{t}_1 \rightarrow b W \tilde{\chi}^0_1, m_{\tilde{t}_1} \lesssim 300 {\rm GeV}$	shape-fit $(am_{T2} \text{ and } m_T)$
tNbC_mix	non-symmetric $(\tilde{t}_1 \to t \tilde{\chi}_1^0, \tilde{t}_1 \to b \tilde{\chi}_1^{\pm})$	cut-and-count

Direct stop: 1 lepton + >=4 jets $m(W) < \Lambda m < m(t)$ n(X°⁰) [GeV] Results consistent with SM Events / 11 GeV ATLAS 🗕 Data $\widetilde{t_1}\widetilde{t_1} \text{ production, } \widetilde{t_1} \rightarrow t \; \widetilde{\chi}_1^0 \, / \, b \; \widetilde{\chi}_1^{\sharp}, \widetilde{\chi}_1^{\sharp} \rightarrow W^{(^{t)}} + \widetilde{\chi}_1^0, \; m_{\widetilde{\chi}_1^{\sharp}} = 2 \; m_{\widetilde{\chi}_1^0}$ 16E $\sqrt{s} = 8 \text{ TeV}, \int L dt = 20 \text{ fb}^{-1}$ ≣₩+jets m₂₀ [GeV] bCa_low Other ZZ Total SM $x = BR(\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0)$ ATLAS ---m(t̃₁, $\tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{0})$ =(175,165,145) GeV 350 x = 0% L dt = 20 fb⁻¹, (s=8 TeV = 25% = 50% 300 = 75% 1-lepton + jets + E_+^{miss} = 100%Expected limits All limits at 95% CL Observed limits 250 25 30 35 40 45 50 Lepton p_ [GeV] 200 Jets / 35 GeV ATLAS ⊷ Data 150 √s = 8 TeV, ∫ L dt = 20 fb⁻¹ tN_boost Other I Total SM 100 m(t.,7 =(700,1) GeV =(650.1) GeV 50300 400 700 500 600 m_⊷ [GeV] Several additional interpretations, in mixed 150 50 100 200 250 scenarios and in phenomenological MSSM Large-R jet mass [GeV]

models with longer stop decay chains

Complimentarity of searches

Various assumptions of ∆M(stop-chargino) and ∆M(chargino-neutralino)

Monica D'Onofrio, SUSY14, Manchester

July 23, 2014

28

Complimentarity of searches (II)

Ewkinos and sleptons production

Again, many possible signatures, possibly several leptons ..

Direct sleptons and charginos (2 e,μ)

- Use mT2 or mjj (for charg-neut2 via WZ as discriminant
- Also: $\Delta \phi(ll)$, $p_T(ll)$, m(ll)

Background modeling:

- Reducible: data driven
- Irreducible (Dominant: WW, ttbar) CR defined with at least one reverted cut

Interpretations

Monica D'Onofrio, SUSY14, Manchester

July 23, 2014

Chargino-neutralino pair production in 3L (e, μ , τ)

Signature: 3 leptons (e, μ , τ), SFOS pair + E_T^{miss}

 $\ell^+\ell^-\ell, \ell^+\ell^-\ell'$

veto

binned

 $m_{\rm SFOS}$ binned

 m_T binned

 $\tilde{\ell}, WZ$ -mediated

ℓ±ℓ±ℓ′∓

veto

> 50

 $p_{\rm T}^{3^{\rm rd}\ell} > 20$

 $\Delta \phi_{III}^{\min} \leq 1.0$

Wh-mediated

 $m_{\ell\tau} < 120$ $m_{ee} Z$ veto

Wh-mediated

 $\tilde{\tau}_L$ -mediated

SM Backgrounds

Irreducible (MC) WZ, ZZ, VVV, ttbar+V

Reducible (matrix method) Ttbar, Z+jets

SM background checked in several validation regions

Monica D'Onofrio, SUSY14, Manchester

Wh-mediated

Flavour/sign

b-tagged jet

Target model

 E_{T}^{miss}

Other

Interpretations

light sleptons

- Exclude degenerate chargino-neutralino2 up to 700 GeV(420 GeV) for low(high) slepton masses
 - In WZ case, combination with 2L (mjj based Z-region analysis)

heavy sleptons

Complement this with searches for W+higgs - if neut2-neut1 $\Delta m > m(h)$

Monica D'Onofrio, SUSY14, Manchester

July 23, 2014

Interpretation (II)

ATLAS-CONF-2013-093

<u>1407.0350</u>

Light-stau scenarios

- Dedicated search for 2-hadronic taus and MET
 - Sensitive to chargino pair, chargino-neutralino and stau pair production
- 4 SRs defined to enhance sensitivity to various targeted signals (use mT2, mT tau, MET)
- Main background:
- \rightarrow misidentified taus
 - Multijet (data-driven)
 - $W(\rightarrow \tau v)$ +jets (semi-data driven)

Example of discriminating variable mT2

Results

- Good agreement between data and SM expectations
- First interpretation for direct stau pair production:
 - Getting closer to sensitivity!

 $\tilde{\chi}_1^0$

Monica D'Onofrio, SUSY14, Manchester

p

Summary of EWK searches

Multilepton (>=4) search

Sensitive to EWK RPC SUSY, but also Gauge Mediated models, Strong and EWK production in RPV models. A few examples:

Signature: \geq 4 leptons (0, 1, 2 hadronic τ) + Meff/E_T^{miss}

1405.5086

Results

Monica D'Onofrio, SUSY14, Manchester

July 23, 2014

Displaced vertex (DV) searches

▶ If couplings are ≠ 0 but very small: non prompt particle production Search for displaced vertices with muons (RPV arises from λ') p_{q}^{p} q_{q}^{p} μ_{q}^{p} µ for triggering

ATLAS-CONF-2013-092

- Recover signal tracks performing special
 're-tracking'
- Vertex: must be at least 4mm from any primary vertex, in |z|<300mm and r<180mm, and away from Inner Detector material
- Signal region optimized on number of tracks in the vertex (>=4) and vertex mass (>10 GeV)

Results

- Very small background:
 0.02 ± 0.02
- Setting limits on cross section as a function of lifetime for various representative mass hypotheses
- MH/ML/HL for medium/ medium/ heavy squark and heavy/ light/ light neutralino

More results on long-lived particles using 8 TeV data:

- LL Stopped R-hadrons 1310.6584
- 'Disappearing' tracks for small DM(charg-neut) <u>1310.3675</u>
- Massive LL sleptons <u>ATLAS-CONF-</u> 2013-058

ATLAS SUSY Searches* - 95% CL Lower Limits

Sta	atus: ICHEP 2014								$\sqrt{s} = 7, 8 \text{ TeV}$
	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fb	-1]	Mass limit		Reference
Inclusive Searches	$ \begin{array}{l} MSUGRA(CMSSM \\ MSUGRA(CMSSM \\ MSUGRA(CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\ell}_{10}^{\tilde{Q}} \\ \tilde{g}\tilde{z}, \tilde{g} \rightarrow q \tilde{q} \tilde{\ell}_{1}^{\tilde{Q}} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\ell}_{1}^{\tilde{Q}} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{\tilde{Q}} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\ell} (\ell / \ell / \nu) \nu \tilde{\mu}_{1}^{\tilde{Q}} \\ GMSB (\tilde{\ell} NLSP) \\ GMSB (\tilde{\ell} NLSP) \\ GGM (bino NLSP) \\ GGM (bino NLSP) \\ GGM (mino NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino NLSP) \\ GFavitino LSP \end{array} $	$\begin{array}{c} 0 \\ 1 e, \mu \\ 0 \\ 0 \\ 0 \\ 2 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 1 - 2 \tau + 0 - 1 \ell \\ 2 \gamma \\ 1 e, \mu + \gamma \\ \gamma \\ 2 e, \mu \left(Z \right) \\ 0 \end{array}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.3 20.3 4.8 4.8 5.8 10.5	\$\vec{q}\$ \$\vec{q}\$ <td< th=""><th>1.2 T 1.1 Te 850 GeV 1.3 1.18 T 1.12 Te 1.24 1.24 619 GeV 900 GeV 690 GeV 645 GeV</th><th>1.7 TeV m(g)=m(g) TeV any m(g) V any m(g) M(ξ)=0 GeV m(ξ)=0 GeV STeV m(ξ)=0 GeV W m(ξ)=0 GeV V m(ξ)=0 GeV V m(ξ)=0 GeV TeV m(ξ)=50 GeV TeV m(ξ)=50 GeV m(ξ)=50 GeV m(ξ)=50 GeV m(ξ)=200 GeV m(ξ)=200 GeV m(ζ)=10⁻⁴ eV m(ζ)=10⁻⁴ eV</th><th>1405.7875 ATLAS-CONF-2013-062 1308.1841 1405.7875 1405.7875 ATLAS-CONF-2013-062 ATLAS-CONF-2013-069 1208.4668 1407.0603 ATLAS-CONF-2012-144 ATLAS-CONF-2012-147 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152</th></td<>	1.2 T 1.1 Te 850 GeV 1.3 1.18 T 1.12 Te 1.24 1.24 619 GeV 900 GeV 690 GeV 645 GeV	1.7 TeV m(g)=m(g) TeV any m(g) V any m(g) M(ξ)=0 GeV m(ξ)=0 GeV STeV m(ξ)=0 GeV W m(ξ)=0 GeV V m(ξ)=0 GeV V m(ξ)=0 GeV TeV m(ξ)=50 GeV TeV m(ξ)=50 GeV m(ξ)=50 GeV m(ξ)=50 GeV m(ξ)=200 GeV m(ξ)=200 GeV m(ζ)=10 ⁻⁴ eV m(ζ)=10 ⁻⁴ eV	1405.7875 ATLAS-CONF-2013-062 1308.1841 1405.7875 1405.7875 ATLAS-CONF-2013-062 ATLAS-CONF-2013-069 1208.4668 1407.0603 ATLAS-CONF-2012-144 ATLAS-CONF-2012-147 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
3' ^d gen. § med.	$\overline{s} \rightarrow b \overline{b} \overline{\chi}_{1}^{0}$ $\overline{s} \rightarrow t \overline{\chi}_{1}^{0}$ $\overline{s} \rightarrow t \overline{\chi}_{1}^{0}$ $\overline{s} \rightarrow b \overline{\chi}_{1}^{0}$	0 0 0-1 e, μ 0-1 e, μ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	8 8 8 8	1.25 1.1 Te 1.3 1.3	TeV m(k ⁰)<400 GeV V m(k ⁰) <350 GeV i4 TeV m(k ⁰)<400 GeV 3 TeV m(k ⁰)<300 GeV	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{i}_1 \tilde{c}_1 (\text{light}), \tilde{i}_1 \rightarrow b \tilde{k}_1^1 \\ \tilde{r}_1 \tilde{r}_1 (\text{light}), \tilde{i}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{r}_1 \tilde{r}_1 (\text{medium}), \tilde{r}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{r}_1 \tilde{r}_1 (\text{medium}), \tilde{r}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{r}_1 \tilde{r}_1 (\text{heavy}), \tilde{r}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{r}_1 \tilde{r}_1 (\text{heavy}), \tilde{r}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{r}_1 \tilde{r}_1 (\text{heavy}), \tilde{r}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{r}_1 \tilde{r}_1 (\text{neary}) \text{ Gaussian and BMSB}) \\ \tilde{r}_2 \tilde{r}_2, \tilde{r}_2 \rightarrow \tilde{r}_1 + Z \end{split} $	0 $2 e, \mu$ (SS) $1-2 e, \mu$ $2 e, \mu$ 0 $1 e, \mu$ 0 $1 e, \mu$ 0 $3 e, \mu$ (Z)	2b 0-3b 1-2b 0-2 jets 2 jets 2b 1b 2b nono-jet/~t 1b 1b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.3 4.7 20.3 20.1 20 20.1 20.1 20.3 20.3 20.3 20.3	b ₁ b ₁ t ₁ t ₁ t ₁ t ₁ t ₁ t ₁ t ₁ t	100-620 GeV 275-440 GeV 130-210 GeV 215-530 GeV 150-580 GeV 210-640 GeV 90-240 GeV 150-580 GeV 150-580 GeV 290-600 GeV	$\begin{split} m(\xi_1^0) <&90 \ \text{GeV} \\ m(\xi_1^0) - 2 \ m(\xi_1^0) \\ m(\xi_1^0) - 55 \ \text{GeV} \\ m(\xi_1^0) - 55 \ \text{GeV} \\ m(\xi_1^0) - 1 \ \text{GeV} \\ m(\xi_1^0) - 1 \ \text{GeV} \\ m(\xi_1^0) - 200 \ \text{GeV}, m(\xi_1^0) - m(\xi_1^0) - 5 \ \text{GeV} \\ m(\xi_1^0) - 0 \ \text{GeV} \\ m(\xi_1^0) - 0 \ \text{GeV} \\ m(\xi_1^0) - 0 \ \text{GeV} \\ m(\xi_1^0) - 150 \ \text{GeV} \\ m(\xi_1^0) - 150 \ \text{GeV} \\ m(\xi_1^0) - 200 \ \text{GeV} \end{split}$	1308.2631 1404.2500 1208.4305, 1209.2102 1403.4853 1308.2631 1407.0583 1406.1122 1407.0608 1403.5222 1403.5222
EW direct	$\begin{array}{l} \tilde{\ell}_{LR} \tilde{\ell}_{LR}, \tilde{\ell} \rightarrow \tilde{\ell}_{1}^{0} \\ \tilde{\chi}_{1}^{*} \tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{*} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{*}, \tilde{\chi}_{1}^{*} \rightarrow \tilde{\nu} (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu_{L}^{*} \ell \ell (\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{*} \\ \tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{*} h \tilde{\chi}_{1}^{*} \\ \tilde{\chi}_{2}^{*} \tilde{\chi}_{3}^{*} \rightarrow W \tilde{\chi}_{1}^{*} h \tilde{\chi}_{1}^{*} \\ \tilde{\chi}_{2}^{*} \tilde{\chi}_{3}^{*} \rightarrow W \tilde{\chi}_{1}^{*} h \tilde{\chi}_{1}^{*} \end{array}$	2 e, μ 2 e, μ 2 τ 3 e, μ 2-3 e, μ 1 e, μ 4 e, μ	0 0 - 0 2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	λ χ χ χ χ χ χ χ χ χ χ χ χ χ	90-325 GeV 140-465 GeV 100-350 GeV 700 GeV 420 GeV 285 GeV 620 GeV	$\begin{split} & m(\tilde{\xi}_1^n) = 0 \; \text{GeV} \\ & m(\tilde{\xi}_1^n) = 0 \; \text{GeV}, \; m(\tilde{\xi}_1^n) = 0.5(m(\tilde{\xi}_1^n) + m(\tilde{\xi}_1^n)) \\ & m(\tilde{\xi}_1^n) = 0 \; \text{GeV}, \; m(\tilde{\xi}_1^n) = 0.5(m(\tilde{\xi}_1^n) + m(\tilde{\xi}_1^n)) \\ & m(\tilde{\xi}_1^n) = m(\tilde{\xi}_1^n) = 0, \; m(\tilde{\xi}_1^n) = 0, \; sleptons \; decoupled \\ & m(\tilde{\xi}_1^n) = m(\tilde{\xi}_2^n), \; m(\tilde{\xi}_1^n) = 0, \; sleptons \; decoupled \\ & m(\tilde{\xi}_1^n) = m(\tilde{\xi}_2^n), \; m(\tilde{\xi}_1^n) = 0, \; m(\tilde{\xi}_1^n) = 0.5(m(\tilde{\xi}_2^n) + m(\tilde{\xi}_1^n)) \end{split}$	1403.5294 1403.5294 1407.0250 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093 1405.5096
Long-lived particles	Direct $\tilde{\chi}_1^* \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^*$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{c}, \tilde{\mu}) + \tau(e, GMSB, \tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}, \log - lived \tilde{\chi}_1^0$ $\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow q q \mu$ (RPV)	Disapp.trk 0 μ) 1-2 μ 2 γ 1 μ, displ.vtx	1 jet 1-5 jets	Yes Yes - Yes -	20.3 27.9 15.9 4.7 20.3	X ₁ x X ₁ X ₁ q q	270 GeV 832 GeV 475 GeV 230 GeV 1.0 TeV	m(ξ ⁺ ₁)-m(ξ ⁰ ₁)=160 MeV, τ(ξ ⁺ ₁)=0.2 ns m(ξ ⁰ ₁)=100 GeV, 10 μs<τ(ξ)<1000 s 10 <tanβ<50 0.4<τ(ξ⁰₁)<2 ns 1.5 <cr∈ 156="" br(μ)="1," m(ξ<sup="" mm,="">0₁)=108 GeV</cr∈></tanβ<50 	ATLAS-CONF-2013-069 1310.6584 ATLAS-CONF-2013-059 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \tilde{\nu}_{\tau} + X, \tilde{\nu}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{\nu}_{\tau} + X, \tilde{\nu}_{\tau} \rightarrow e(\mu) + \tau \\ Bilnear \ RPV \ CMSSM \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow ee\tilde{\nu}_{\mu}, e\mu \tilde{\nu}_e \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tau \tau \tilde{\nu}_e, e\tau \tilde{\nu}_{\tau} \\ \tilde{g}^- q q q \\ \tilde{g} \rightarrow \tilde{q}_1 t, \tilde{\tau}_1 \rightarrow bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu (\text{SS}) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu (\text{SS}) \end{array}$	- 0-3 b - - 6-7 jets 0-3 b	- Yes Yes Yes - Yes	4.6 20.3 20.3 20.3 20.3 20.3 20.3	37. 37. 37. 37. 37. 37. 37. 38. 38. 38.	1.1 Te) 1.3 750 GeV 450 GeV 916 GeV 850 GeV	1.61 TeV X ₃₁₁ =0.10, λ_{132} =0.05 X ₃₁₁ =0.10, $\lambda_{1(2)33}$ =0.05 35 TeV m (β)=m(β), $c_{72,2,P}$ =1 mm m (β ² ₁)>0.2×m(β ² ₁), λ_{123} =0 m (β ² ₁)>0.2×m(β ² ₁), λ_{133} =0 B (β)= B (β)= B (β)= B (β)= D (β)= 	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 e, µ (SS) 0	4 jets 2 <i>b</i> mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon sgluon M'scale	100-287 GeV 350-800 GeV 704 GeV	Incl. limit from 1110.2593 m_{χ}^{\prime} <80 GeV, limit of <687 GeV for D8	1210.4825 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7$ TeV full data P	√s = 8 TeV artial data	$\sqrt{s} = \frac{1}{100}$	8 TeV data		10-1	1 1	Mass scale [TeV]	

ATLAS Preliminary

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

ATL-PHYS-PUB-2014-010

 10^{12}

1011

 10^{10}

 10^{8} ab

= 14 TeV

 $\rightarrow \tilde{t}\tilde{t}^{*}$

Long-term prospects: HL-LHC

- New studies on Strong and EWK SUSY particles production with 300 and 3000 /fb at 14 TeV
- Gluinos and squarks:

10

10

10³

 10^{2}

 10^{1} 10^{0} Followed prescriptions in 1206.2892

10

Long-term prospects: HL-LHC

- New studies on Strong and EWK SUSY particles production with 300 and 3000 /fb at 14 TeV
- Chargino and neutralino production:

10 10

 10^{3}

 10^{2}

 10^{1} 10^{0}

10

 10^{-} 10

Cross Section [pb]

Very challenging even with 3 / ab

Conclusions

- Wide and broad program of SUSY searches at ATLAS
 - 18 papers published on the full data-set, plus several additional preliminary results in CONF Notes

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

- Aim to cover as many final states and signatures as possible
- No sign of SUSY yet, but great expectations from Run 2!
- Lot of work on-going in preparation for Run 2

See you next year with hopefully great news for SUSY!

Same Sign / 3-leptons

• Gluino is a majorana fermion \rightarrow SS lepton final states enhanced

Signature: $e^{\pm}e^{\pm}$, $\mu^{\pm}\mu^{\pm}$, $e^{\pm}\mu^{\pm}$ (with/without extra lepton)[,] \geq 3, 4 jets (0, \geq 1, 3 b-tagged jets) + E_{T}^{miss}

Irreducible background tested in validation regions . Ex: ttZ VR $\rightarrow 3L$, 86<m(ll)<96 GeV

Same sign leptons: results

SR SR3b SR0b SR1b	Leptons SS or 3L SS SS	N_{b-jets} ≥ 3 = 0 ≥ 1	$\begin{split} N_{\rm jets} \geq 5 \\ N_{\rm jets} \geq 3, E_{\rm T}^{\rm miss} > 150 ~{\rm GeV}, \\ m_{\rm T} > 100 ~{\rm GeV} \\ N_{\rm jets} \geq 3, E_{\rm T}^{\rm miss} > 150 ~{\rm GeV}, \\ m_{\rm T} > 100 ~{\rm GeV}, \\ m_{\rm T} > 100 ~{\rm GeV}, \\ \end{split}$	Additions o m_{eff} m_{eff}	al requirement n m _{eff} >350 GeV >400 GeV >700 GeV		LAS dt = 20.3 fb ⁻¹ , is = 8	DTeV	b Region Data – SM Total Fake leptons Charge flip – Top + X Diboson + Triboson \tilde{g} \tilde{g} production, $\tilde{g} \rightarrow tc+\tilde{\chi}_{1}^{0}$ – $\mathfrak{m}(\tilde{\chi}_{1}^{0}) = \mathfrak{m}(\tilde{t}_{1}) - 20 \text{ GeV}$ $(\tilde{g}, \tilde{t}_{1}) = (700, 400) \text{ GeV}$ –
SR3Llow	3L	-	$N_{ m jets} \ge 4, \ 50 < E_{ m T}^{ m miss} < 150 \ { m GeV},$ Z boson veto, SR3b veto	$m_{\rm eff}$	>400 GeV	5		•	
SR3Lhigh	3L	-	$N_{\text{jets}} \ge 4, E_{\text{T}}^{\text{miss}} > 150 \text{ GeV}, \text{SR3b vet}$	so m_{eff}	>400 GeV				
				SR3b	SR0b	400 SR1b	600 SR3Llow	soo 1000 SR3Lhigh	1200 1400 m _{eff} [GeV
		Observe	ed events	1	14	10	6	2	
		Total ex $p(s=0)$	xpected background events	$\begin{array}{c} 2.2\pm0.8\\ 0.50\end{array}$	$6.5 \pm 2.3 \\ 0.03$	$4.7 \pm 2.1 \\ 0.07$	$4.3 \pm 2.1 \\0.29$	$2.5 \pm 0.9 \\ 0.50$	
		Expecte for chos	ed signal events sen benchmark models	3.4 ± 0.7	24.3 ± 3.5	16.4 ± 3.0	10.6 ± 1.0	5.0 ± 0.8	
		Composite $t\bar{t}V$, $t\bar{t}H$	nents of the background , tZ and $t\bar{t}t\bar{t}$	1.3 ± 0.5	0.9 ± 0.4	2.5 ± 1.7 0.9 ± 0.4	1.6 ± 1.0 1.2 ± 0.6	1.3 ± 0.7 1.2 ± 0.6	

Monica D'Onofrio, SUSY14, Manchester

July 23, 2014

SR Ib

Exclusion limits

50

Same Sign leptons: additional interpretations

Interpretation in a vast array of RPC/RPV simplified models

Monica D'Onofrio, SUSY14, Manchester

 $\rightarrow t\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}^{\pm}, m(\tilde{t}) < m(\tilde{g}), m(\tilde{\chi}^{0}) = 60 \text{ GeV}, \tilde{\chi}^{\pm} = 118 \text{ GeV}$

Numbers give 95% CL excluded

1300

Direct Stop production: 2-leptons

Sensitive to decays via chargino,
 depending on the mass hiearchy

Discriminant: m_{T2} variable

(leptons or b-jets) \rightarrow an upper bound for W-boson events

SM dominant background:

• dilepton ttbar, WW, WZ and $ZZ \rightarrow$ use appropriate CR regions

Monica D'Onofrio, SUSY14, Manchester

403.4853

 $\tilde{t} \rightarrow t \tilde{\chi}$

m(t ̃) [GeV

 $t^{(*)}(\rightarrow b\ell v)$

n(X"⁰) [GeV]

 $W(\rightarrow \ell v)$

Direct stop in 2 lepton

Results in good agreement with SM predictions

Channel	L90	L100	L110	L120
Observed events	274	3	8	18
Total bkg events	300 ± 50	5.2 ± 2.2	9.3 ± 3.5	19 ± 9
Fit output, $t\bar{t}$ events	172 ± 33	3.5 ± 2.1	3.4 ± 2.9	1.1 ± 1.1
Fit output, WW events	78 ± 20	1.0 ± 0.5	3.2 ± 1.4	12 ± 7
Fit output, WZ , ZZ events	11.6 ± 2.4	$0.22^{+0.26}_{-0.22}$	0.9 ± 0.5	4.1 ± 2.1

Onamei	1100
Observed events	33
Total bkg events	26 ± 6
Fit output, $t\bar{t}, Wt$ events Fit output, $Z/\gamma^* \to ee, \mu\mu+$ jets events	22 ± 5 $0.2^{+1.8}_{-0.2}$

Monica D'Onofrio, SUSY14, Manchester

July 23, 2014

- $Z(\rightarrow nn)$ +jets, semi-lep ttbar, W+jets
- Minor contribution:
 - single top, di-boson, ttbar+W/Z

m_{cT} [GeV]

Difference in kinematics between sbottom and stop signal

500 GeV, m

sbottom stop (Δ m=5 GeV) stop (Δ m=10 GeV) stop (Δ m=20 GeV)

1407.0350

 $\frac{\nu_{\tau}/\tau}{\tau/\nu_{\tau}}$

 ν_{τ}/τ

Light-stau scenarios

- Dedicated search for 2-hadronic taus and MET
 - Sensitive to chargino pair, chargino-neutralino and stau pair production
- 4 SRs defined to enhance sensitivity to various targeted signals (use mT2, mT tau, MET)
- Main background: misidentified taus
 - Multijet (data-driven), W+jets (semi-data driven)

