

CMS SEARCHES FOR SUPERSYMMETRIC PARTICLES AT THE LHC

Henning Flaecher H.H. Wills Physics Laboratory University of Bristol

for the CMS Collaboration

Henning Flaecher - SUSY 2014 Manchester

23rd July 2014

*The SUSY (s)particle spectrum

*Search for ~all of these, produced either directly or in cascades

*The experimental challenge

*SUSY signal likely small compared to SM backgrounds

*The experimental challenge

*SUSY signal likely small compared to SM backgrounds

Henning Flaecher - SUSY 2014 Manchester

23rd July 2014

* Focus of current searches

- * stops and sbottoms (special role wrt to Higgs)
- * gluinos and "light" squarks
 - * search again for stop and sbottoms in gluino decays
- * charginos, neutralinos, sleptons
- * searches for Higgs in SUSY cascade decays

LPCC SUSY o WG 10 data NLO(-NLL) σ(pp→ SUSY) [pb] 10-1 fb⁻¹ ğğ 20 10-2 #events in $\widetilde{\chi}^{\dagger}\widetilde{\chi}$ 10-3 10 10^{-4} 200 600 800 1000 1200 400 1400 1600 SUSY sparticle mass [GeV] https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections arXiv:1206.2892

*RPV searches

* Focus of current searches

- * stops and sbottoms
 - * Direct stop pair production SUS-13-015, SUS-14-011
 - * Monojet search for stop-> charm χ_1^0 SUS-13-009
 - * Search for sbottom production SUS-13-018
- * gluinos and "light" squarks
 - * search again for stop and sbottom in gluino decays
 - * Inclusive search with M_{T2} SUS-13-019
 - * Inclusive search with razor SUS-14-011

- * searches for Higgs in SUSY cascade
 - * stop₂ -> stop₁ + higgs/Z search SUS-13-024
 - * neutralino1 -> higgs + gravitino
 SUS-13-022
- * charginos, neutralinos, sleptons
 - * channels with Higgs, Z & W bosons SUS-13-006, SUS-14-002
 - * OS dilepton edge SUS-12-019
 - * GGM searches with photons -SUS-14-008
- * RPV searches * SUS-12-015, SUS-13-010
- * There are many many more results, please check:
- * https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

*Signature based searches

*split by no. of jets, b-jets, leptons, photons, ...

Sparticles		Decay products		Physics Objects
gluinos	7	tops		jets
squarks (1 st & 2 nd gen)	7	bottom		b-jets
stops		light quarks		electrons
sbottom	X	W		muons
charginos		Z		dilepton pairs
neutralinos		e	4	 opposite sign como sign
sleptons		mu	7	opposite flavour
		photon		same flavour
		neutrinos		multileptons
	*	neutralinos		photons
				missing energy

Many possible final states for decay of one particle - can get complicated quickly!

*Signature based searches

*split by no. of jets, b-jets, leptons, photons, ...

Sparticles

gluinos	•			
squarks (1 st & 2 nd gen)	•			
stops	•			
sbottom	•			
charginos				
neutralinos				
sleptons				

Decay products	
tops	~
bottom	~
light quarks	~
W	~
Z	
e	
mu	
photon	
neutrinos	V
neutralinos	V

Physics Objects

	jets
--	------

- ✓ b-jets
 - electrons

muons

dilepton pairs

- opposite sign
- same sign
- opposite flavour
- same flavour

multileptons

photons

missing energy

given final state often sensitive to more than one decay chain

*Search strategies

* Define signal regions such to keep expected backgrounds small, by using novel kinematic variables, e.g., α_T , M_{T2} , M_{CT} , R^2 , M_R etc.

* Define background enriched control samples that are kinematically similar to signal region

* Extrapolate from control -> signal regions using extrapolation factors derived from simulation and data wherever possible

* Verify extrapolation and its accuracy from independent control regions

M_R [GeV]

23rd July 2014

*Searches for chargings, neutralings and sleptons

*Searches for electroweak SUSY production chargino/neutralino

* Electroweak production characterized by * smaller predicted cross sections * lower levels of hadronic activity

* CMS carried out comprehensive search programme covering di-boson + MET final states: WW, WZ, ZZ, Wh, Zh, hh * with h -> ZZ, WW, γγ, bb

* Higgs discovery opens up new SUSY searches:

- * Lightest neutral CP-even Higgs (h) expected to be SM-like, if others are heavy.
- * Charginos and neutralinos decay to h+LSP or V+LSP, with V=W,Z.

* Interpretations in Simplified models

SUS-14-002 & arXiv:1405.7570

*direct production of stops and spottoms

* **Direct stop production - SUS-13-015** *Hadronic decay channel, aims at reconstructing tops

*Uses p_{Tmiss}, M_{T2}, M_T^{Rsys} and M_T^{3jet} distributions as discriminating variables

Search	$Z \rightarrow \nu \bar{\nu}$	tī/W	tī/W	QCD	Rare	Total	Obs.
region		\rightarrow e, μ +X	$\rightarrow \tau_{\rm h} + X$		processes	background	data
$p_{\mathrm{T}}^{\mathrm{miss}} > 200 \mathrm{GeV}, N_{\mathrm{b-jets}} \ge 1$	$35.8 \substack{+16.3 \\ -19.0}$	$89.3 \substack{+21.9 \\ -21.0}$	$120.2 \ ^{+11.8}_{-11.9}$	$3.2 {+18.2 \atop -3.2}$	$5.8 \substack{+2.9 \\ -2.9}$	$254.3 \substack{+35.0 \\ -31.0}$	254
$p_{\mathrm{T}}^{\mathrm{miss}} > 350 \mathrm{GeV}, N_{\mathrm{b-jets}} \ge 1$	$13.2 \substack{+6.5 \\ -7.9}$	$8.2 \ _{-4.0}^{+4.0}$	$16.5 \ ^{+3.4}_{-3.4}$	$1.0 \ ^{+1.9}_{-1.0}$	$2.0 \ ^{+1.0}_{-1.0}$	$40.9 \ ^{+8.6}_{-9.6}$	45
$p_{\mathrm{T}}^{\mathrm{miss}} > 200 \mathrm{GeV}, N_{\mathrm{b-jets}} \ge 2$	$6.1 \ ^{+15.3}_{-5.5}$	$33.8 \ ^{+10.3}_{-10.0}$	$45.3 \ ^{+7.0}_{-7.0}$	$0.1 \ ^{+0.6}_{-0.1}$	$3.1 \substack{+1.6 \\ -1.6}$	$88.4 \substack{+19.8 \\ -13.5}$	83
$p_{\rm T}^{\rm miss} > 350 { m GeV}, N_{ m b-jets} \ge 2$	$1.8 \substack{+6.8 \\ -1.6}$	$1.2 \ ^{+1.0}_{-1.0}$	$4.3 {}^{+1.7}_{-1.8}$	$0.1 \ ^{+0.5}_{-0.1}$	$1.2 \substack{+0.6 \\ -0.6}$	8.6 +7.1	15

*Limit in stab-neutralina mass plane \tilde{t}

*Dependence on stop BF

SUS-13-015

CMS Preliminary, L = 19.4 fb⁻¹, \sqrt{s} = 8 TeV $m_{\widetilde{\chi}_1^0} \left[\text{GeV} \right]$ 400 **Observed limits** $pp \rightarrow \tilde{t}\tilde{t}^*, \tilde{t} \rightarrow t\tilde{\chi}^0_{\perp}$ 350 −− BF($\tilde{t} \rightarrow t \tilde{\chi}^0$) = 1.0 $BF(\tilde{t} \rightarrow t\tilde{\chi}^0) = 0.9$ 300 $BF(\tilde{t} \rightarrow t\tilde{\chi}^0) = 0.8$ $BF(\tilde{t} \rightarrow t\tilde{\chi}^0) = 0.7$ 250 $BF(\widetilde{t} \rightarrow t \widetilde{\chi}^{0}) = 0.6$ Ex. Ex. 200 150 100 50 200 400 600 800 m_∓ [GeV] all hadronic stop search

Henning Flaecher - SUSY 2014 Manchester

 $\widetilde{\mathsf{X}}^{\pm} \underbrace{\qquad \qquad}_{\widetilde{\mathsf{X}}^{\circ}} \underbrace{\widetilde{\mathsf{X}}^{\pm} \to \mathsf{W}^{\star} \widetilde{\mathsf{X}}^{\circ}}_{\widetilde{\mathsf{X}}^{\circ}}$

23

SUS-14-011

* Monojet search for stop->charm χ₁⁰ SUS-13-009

- * Monojet search as function of leading
 jet p_T (> 250 GeV, ... , >550GeV)
 * MET > 250 GeV
- * Allow for second jet with p_T > 60 GeV, veto 3rd jet
- *Stop decay "invisible"
 * only soft decay products

*Interpretation - SUS-13-009

$p_{\rm T}(j_1)$ (GeV/c)	> 250	> 300	> 350	> 400	> 450	> 500	> 550
Total SM	35862 ± 1474	$1\overline{7}\overline{4}\overline{0}\overline{9}\pm\overline{8}\overline{0}\overline{3}$	$806\overline{4}\pm437$	$39\overline{0}7\pm25\overline{0}$	$2\overline{0}\overline{9}8\pm16\overline{0}$	1096 ± 106	563±71
Data	36582	17646	8119	3896	1898	1003	565

* Stop₂ search with decay yia Z and H SUS-13-024

Veto	N _{b jets}	$N_{ m jets}$	$E_{\rm T}^{\rm Huss}$ [GeV]	Additional requirements [GeV]	
track or $\tau_{\rm b}$	= 3	≥ 5	> 50	$m_{\mathrm{T}} > 150$	
$ = 1 + 1 + 1 \geq 4 \geq 4 \geq 4 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$		<u> </u>	$m_{\rm T} > 120$		
autra a / 11	= 3	\geq 5	> 50	$(N_{\rm e} = 1 \text{ with } 100 < m_{\odot} < 150)$ $N_{\rm e} > 2$	
extra e/ µ	≥ 4	≥ 4	≥ 50	$(N_{bb} \equiv 1 \text{ whill } 100 \le m_{bb} \le 150), N_{bb} \le 2$	
antra a / 11	= 1	[2, 2] > 4	[50, 120] > 120	for low (high m_{-1} H \subset [200, 400] > 400	
exila e/ µ	≥ 2	$[2, 3], \ge 4$	$[50, 120], \ge 120$	101 10w/11igh- $p_{\rm T}$. $n_{\rm T} \in [200, 400], \ge 400$	
	= 1	[2, 2] > 4			
—	= 2	[∠,3], ≥ 4	$[50, 100], [100, 200], \ge 200$	for on/off-Z: $H_{\rm T} \in [60, 200], \ge 200$	
	\geq 3	\geq 3			
	Veto track or τ_h extra e/ μ extra e/ μ	Veto $N_{b jets}$ track or τ_h = 3 ≥ 4 = 3extra e/μ = 3 ≥ 4 ≥ 4 extra e/μ = 1 ≥ 2 = 1 $= 2$ ≥ 3	Veto $N_{\rm b jets}$ $N_{\rm jets}$ track or $\tau_{\rm h}$ = 3 ≥ 5 ≥ 4 ≥ 4 ≥ 4 extra e/μ = 3 ≥ 5 ≥ 4 ≥ 4 ≥ 4 extra e/μ = 1 ≥ 2 $= 1$ ≥ 2 $[2,3], \geq 4$ $-$ = 1 $[2,3], \geq 4$ ≥ 3 ≥ 3	Veto $N_{b jets}$ N_{jets} E_T^{miss} [GeV]track or τ_h = 3 ≥ 5 ≥ 4 ≥ 4 ≥ 50 extra e/μ = 3 ≥ 5 ≥ 4 ≥ 4 ≥ 50 extra e/μ = 1 $[2,3], \geq 4$ $[50,120], \geq 120$ $-$ = 1 $[2,3], \geq 4$ $[50,100], [100,200], \geq 200$ ≥ 3 ≥ 3 ≥ 3	

Henning Flaecher - SUSY 2014 Manchester

700 800

 $m_{sbottom}$ (GeV)

*inclusive searches (for squarks and gluinos)

*Inclusive search with MT2 - SUS-13-019

- *data-driven background estimations
 - *single muon sample for W+jets and tt+jets
 - * photon + jets and di-muon sample for Z+jets
 - *QCD from M_{T2} sideband extrapolation
- *Search in bins of M_{T2} with $M_{T2} > 200 \text{ GeV}$

*additional interpretations available

*Inclusive rezer analysis with b-tags

* Testing natural SUSY scenario with ~TeV gluino, possible lighter stops and sbottoms and a nearly degenerate chargino/ neutralino triplet.

SUS-13-004, SUS-14-011

* Averyiew of squark & gluino searches

1st & 2nd generation

* Oxerview of squark & gluino searches stops

*SUSY signatures with photons

*Search for kinematic edge from di-leptons

* Kinematic edge in opposite sign, same flavour dilepton events SUS-12-019

* Generic search for kinematic endpoint in dilepton mass spectrum, e.g., * $\tilde{\chi}_2^0 \rightarrow l\tilde{l} \rightarrow \chi_1^0 l^+ l^-$ (produces triangular shape with endpoint) * three body decays of $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 l^+ l^-$ (produces an "edge")

* Background estimation with opposite sign, opposite flavour leptons
 * Two search regions: central |n| < 1.4, forward 1.6 < |n| < 2.4

* Signal and background contributions determined from kinematic fit

* Kinematic edge in opposite sign, same flavour dilepton events sus-12-019

* Generic search for kinematic endpoint in dilepton mass spectrum, e.g., * $\tilde{\chi}_2^0 \rightarrow l\tilde{l} \rightarrow \chi_1^0 l^+ l^-$ (produces triangular shape with endpoint) * three body decays of $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 l^+ l^-$ (produces an "edge")

* In addition, cut and count analysis of events with 20 GeV < m_{ll} < 70 GeV (no shape assumption)

*Prospects for 2015 & 13 TeX

* Good prospects for SUSY from energy increase from 8->13 TeV

- * much larger than just ratio of CM energies
- * up to factor ~50 for pair production of 1.5 TeV gluinos
- * factor 6 for stop pairs of 500 GeV
- * Not only good for SUSY but also other heavy objects such as Z' etc.

*Experimental Challenges in 2015

* Unfortunately boost in sensitivity from increase in CM energy doesn't come for free

- * Currently still uncertain running and beam conditions and luminosity profile
- * Large increase in pile-up guaranteed
- * Effects on:
 - * trigger performance
 - * object reconstruction
 - * isolation variables

Real data event with 78 reconstructed verteces from high pile-up run

*Projections for 300/fb @ 14 TeX

Discovery with 300/fb @ 14 TeV Exclusion with 20/fb @ 8 TeV **CMS Preliminary** \tilde{t} - \tilde{t} production, \tilde{t} \rightarrow t $\tilde{\chi}_1^0$ / c $\tilde{\chi}_1^0$ [GeV] $pp \rightarrow \tilde{t}\tilde{t}^*, \tilde{t} \rightarrow t\tilde{\chi}^0$ 8 TeV, 20 fb 600 ······ 14 TeV, 300 fb¹ (scenario A) 1-lepton channel **CMS Preliminary** - Observed ິ×ັ 500 Based on SUS-13-011 --- 14 TeV. 300 fb¹ (scenario B) √s = 8 TeV --- Expected Estimated 5o discovery reach **ICHEP 2014** SUS-13-011 1-lep (MVA) 19.5 fb⁻¹ SUS-14-011 0-lep + 1-lep + 2-lep (Razor) 19.3 fb 400 SUS-14-011 0-lep (Razor) + 1-lep (MVA) 19.3 fb⁻¹ SUS-13-009 (monojet stop) 19.7 fb⁻¹ ($\tilde{t} \rightarrow c \tilde{\chi}^0$) 400 SUS-13-015 (hadronic stop) 19.4 fb 300 300 200 200 100 100 Λ 900 1000 300 400 500 600 700 800 200 200 300 400 500 600 700 800 m_∓ [GeV] stop mass [GeV]

* Searches will cover the interesting region of stop masses up to 1 TeV with 300/fb @ 13 TeV

*Neutralino masses up to 500 GeV

*In gluino mediated models, reach up to m_{gl} of 2 TeV

*CMS parallel talks

* Inclusive SUSY Particle Searches with Jets and MET

* Kristin Goebel - Tue 14:30, D7

* Searches for Direct Electroweak Production of Charginos, Neutralinos and Sleptons with Leptons and MET

* Santiago Folgueras - Fri 17:10, D1

* Searches for Gluino, Stop and Sbottom Production in Channels with b-Jets and MET
 * Nadja Strobbe, Fri 16:50, D1

* Searches for SUSY in Final States with Photons

* Gail Hanson, Tue 17:30, D1

* Searches for Signatures of R-Parity Violating Models

* Halil Saka, Mon 14:30, D1

* Searches for Dark Matter Production with Mono-objects and MET
 * Bhawna Gomber, Mon 14:30, F14

Summary of CMS SUSY Results* in SMS framework **ICHEP 2014** m(mother)-m(LSP)=200 GeV m(LSP)=0 GeV oduction SUS 13-019 L=19.5 /fb $\tilde{g} \rightarrow qq \tilde{\chi}_{0}$ SUS-14-011 SUS-13-019 L=19.3 19.5 /fb ĝ → bb χ̃ D SUS-13-007 SUS-13-013 L=19.4 19.5 /fb ĝ→tt χ̃ lino SUS-13-008 SUS-13-013 L=19.5 /fb $\tilde{g} \rightarrow t(\tilde{t} \rightarrow t \tilde{\chi})$ - λ <u>≡</u>ρ.20 SUS-13-013 L=19.5 /fb $\tilde{g} \rightarrow qq(\tilde{\chi}^{\pm} \rightarrow W\tilde{\chi}^{0})$ SUS-13-008 SUS-13-013 L=19.5 /f $\tilde{q} \rightarrow b(\tilde{b} \rightarrow t(\tilde{\chi}^{\pm} \rightarrow W\tilde{\chi}^{0}))$ q̃→qχ̃ t̃→tγ̃ x = 0.25 $\tilde{t} \rightarrow b(\tilde{\chi}^{+} \rightarrow W\tilde{\chi}^{0})$ SUS-13-011 L=19.5 /ft x = 0.50 x = 0.75 stop $\tilde{t} \rightarrow t b \tilde{\chi}^{0} (\tilde{\chi}^{0} \rightarrow H G)$ SUS-13-014 L=19.5 /ft $\widetilde{t} \rightarrow (\widetilde{t} \rightarrow t \widetilde{\chi}^{0}) Z$ $\widetilde{t}^{2} \rightarrow (\widetilde{t}^{1} \rightarrow t \widetilde{\chi}^{0}) H$ SUS-13-024 SUS-13-004 L=19.5 /fb SUS-13-024 SUS-13-004 L=19.5 /fb sbottom b̃→b χ̃ SUS-13-008 SUS-13-013 L=19.5 /fb b̃ → tW χ̃ SUS-13-008 L=19.5 /fb δ → bZ χ $\tilde{\chi}_{2}^{0}\tilde{\chi}^{\pm} \rightarrow \mathbb{II}_{V}\tilde{\chi}^{0}\tilde{\chi}^{0}$ ¥.≡9.950 $\rightarrow I^{\dagger} I^{\dagger} V V \tilde{\chi}^{0} \tilde{\chi}^{0} \rightarrow Z Z \tilde{\chi}^{0} \tilde{\chi}^{0}$ gauginos SUS-13-006 L=19.5 /fb **CMS Preliminary** SUS-14-002 L=19.5 /fb $\tilde{\chi}_{2}^{2}\tilde{\chi}_{0}^{2} \rightarrow LL_{0}^{2}$ $\tilde{\chi}_{2}^{2}\tilde{\chi}_{0}^{0} \rightarrow WZ\tilde{\chi}_{0}^{0}\tilde{\chi}_{0}^{0}$ SUS-13-006 L=19.5 /fb → H Z χ̃⁰ χ̃⁰ SUS-14-002 L=19.5 /fb For decays with intermediate mass, EWK ($\rightarrow H W \tilde{\chi}^{0} \tilde{\chi}^{0}$ SUS-14-002 L=19.5 /fb $\tilde{\chi}^{\pm}_{2}\tilde{\chi}^{0} \rightarrow HW\tilde{\chi}^{0}\tilde{\chi}$ $\tilde{\chi}^{0}_{2}\tilde{\chi}^{\pm}_{2} \rightarrow Hv\tilde{\chi}^{0}\tilde{\chi}^{0}$ x = 0.05 $m_{intermediate} = x \cdot m_{mother} + (1-x) \cdot m_{lsp}$ SUS-13-006 L=19.5 /fb x = 0,50 x = 0,95 $\tilde{\chi}^{0}\tilde{\chi}^{\pm} \rightarrow \tau \tau \tau v \tilde{\chi}^{0} \tilde{\chi}^{0}$ SUS-13-006 L=19.5 /fb ĩ→Iγ̃⁰ SUS-13-006 L = 19.5 /fb $\tilde{g} \rightarrow q l l_{\nu} \lambda_{122}$ SUS-12-027 L =9.2 /f $\tilde{g} \rightarrow q I I_V \lambda_{123}$ SUS-12-027 L =9.2 /ft $\tilde{g} \rightarrow q l l_{\nu} \lambda_{233}$ SUS-12-027 L =9.2 /ft $\tilde{g} \rightarrow qbt \mu \lambda'_{231}$ SUS-12-027 L=9.2 /fb $\tilde{g} \rightarrow qbt \mu \lambda'_{233}$ SUS-12-027 | -0.2 /ft $g \rightarrow qqb \lambda$ " 113/223 EXO-12-049 | =19 5 /f $\widetilde{g} \rightarrow qqq \lambda^{"}_{112}$ $\widetilde{g} \rightarrow tbs \lambda^{"}_{323}$ EXO-12-049 | =19 5 /ft SUS-13-013 L=19.5 /ft $\tilde{g} \rightarrow qqqq \lambda$ " $\tilde{q} \rightarrow qllv \lambda$ 112 122 SUS-12-027 L=9.2 /fb SUS-12-027 L=9.2 /ft PV $\tilde{q} \rightarrow q l l \nu \lambda_{123}$ SUS-12-027 L=9.2 /fb $\widetilde{q} \rightarrow q l l_{V} \lambda_{233}$ SUS-12-027 L=9.2 /ft $\tilde{q} \rightarrow qbt_{\mu} \lambda'_{231}$ SUS-12-027 L=9.2 /ft $\widetilde{q} \rightarrow qbt\mu \lambda'_{233}$ $\widetilde{q}_{\mu} \rightarrow qqqq \lambda''_{112}$ SUS-12-027 L=9.2 /fb SUS-12-027 L=9.2 /ft ⇒µevtλ 122 SUS-13-003 L = 19.5.9.2 $\tilde{t}_{n} \rightarrow \mu \tau v t \lambda_{123}$ $\tilde{t}_{-}^{R} \rightarrow \mu \tau v t \lambda_{233}$ SUS-13-003 L=19.5.9.2 $\tilde{t} \rightarrow tbt \mu \lambda'_{233}$ SUS-13-003 L=19.5 /fb 1800 400 600 1000 1200 1400 1600 0 800 200 *Observed limits, theory uncertainties not included Mass scales [GeV] Only a selection of available mass limits Probe *up to* the quoted mass limit

*Higgs in SHSY caseade

* VK production of Higgsinos w -SUS-13

Events/10 GeV

12

0

 $\tilde{\chi}_1^0, \tilde{\chi}_2^0$, and $\tilde{\chi}_1^{\pm}$ states are pure higgsinos. $\widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{2}^{0}, \text{ and } \widetilde{\chi}_{1}^{\pm}$ mass degenerate *4 b-jet final state

 $\tilde{\chi}_1^0$

*Uses MET significance S_{MET} as discriminating variable as well as ΔR between bjets of H candidates and

 $|\Delta m_{jj}| \equiv |m_{jj,1} - m_{jj,2}|$ $\langle m_{jj} \rangle \equiv (m_{jj,1} + m_{jj,2})/2.$

of Higgs candidates

tt (2) Z+iets W+jets

Sinale top

CMS Preliminary, L = 19.3 fb⁻¹, √s = 8 TeV

Example distributions for 4-b events

Henning Flaecher - SUSY 2014 Manchester

23rd July 2014

* Interpretation in GMSB model- SUS-13-022

S_{MET} = [30-50], [50-100], [100-150], [>150]

- *Searches will cover the interesting region of stop masses up to 1 TeV with 300/fb @ 13 TeV
 *Neutralino masses up to 500 GeV
- *In gluino mediated models, reach up to mgl of 2 TeV

*Expected sensitivity @ 14 Te CMS contribution to ECFA workshop $\tilde{\chi}_2^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $\tilde{\chi}_1^{\pm}$ W √s = 14 TeV CMS Simulation CMS Simulation, $\sqrt{s} = 14 \text{ TeV}$ $m_{\widetilde{\chi}_1}(\text{GeV})$ ¹⁰⁰⁰ 900 ³ ¹⁰⁰ (GeV) 800 1000**r** 1800 pp $\rightarrow \widetilde{g} \, \widetilde{g}, \widetilde{g} \rightarrow q \, \overline{q} \, \widetilde{\chi}_1^0 \, 5\sigma$ Discovery Reach Expected 5o Discovery √s = 14 TeV CMS Simulation ····· Phasel, <PU>=0, L=300 fb⁻¹ 700 (GeV) - L = 300 fb⁻¹, Phase I, <PU>=140 1600 Phasel, <PU>=140, L=300 fb⁻¹ Expected 5o Discovery = 3000 fb⁻¹, Phase II Conf3, <PU>=140 Phasel, <PU>=0, L=3000 fb⁻¹ 600 $Br(\tilde{\chi}_{n}^{0} \rightarrow Z \tilde{\chi}_{n}^{0})=100\%$ ہے E 1400 PhaseII Conf3, <PU>=140, L=3000 fb⁻¹ <PU>=0. L=300 fb⁻¹ ····· Phase I L=3000 fb <PU>=0, 700 500 1200 Phase II Conf3, <PU>=140, L=3000 fb $pp \rightarrow \widetilde{g}\widetilde{g}, \, \widetilde{g} \rightarrow t \, \overline{t} \, \widetilde{\chi}^0$ 600 400 $1000 \vdash m(\tilde{t}) >> m(\tilde{g})$ $\widetilde{\chi}^{\scriptscriptstyle\pm}_{\scriptscriptstyle 1} \to W \; \widetilde{\gamma}^0$ 500 300 800 400 200 600 300 100 400 200 800 900 1000 100 200 300 400 500 600 700 200 $m_{\widetilde{\chi}^{\pm}} = m_{\widetilde{\chi}^{0}}$ (GeV) 100 0 500 1000 2500 1500 2000 600 800 1000 1200 1400 1600 1800 2000 2200 2400 $m_{\tilde{a}}$ (GeV) m_ã (GeV) SMS assume 100% BF for these decays!

and $N_b \ge 1$, $3 \le N_j \le 5$ and $N_b = 0$. The data correspond to an integrated luminosity of 19.5 fb⁻¹. All selection cuts are applied. The uncertainty band drawn in this figure does not contain shape uncertainties of the lost-lepton estimate.

55

low H_T

250

Data

350 400 M_{T2} [GeV] Z(vv)+iets

350 400 450 M_{T2} [GeV]

Data

150 200 250 300

Z(vv)+jets

• Data

140 160 180 200 220 240 260 280 300 M_{T2} [GeV]

* MT2 Higgs search - SUS-13-019

*Slightly modified search cuts:

- $N_j \ge 4$,
- $N_b \ge 2$, with $p_T \ge 20 \,\mathrm{GeV}^1$,
- $450 \le H_{\rm T} < 750 \,{\rm GeV}, E_{\rm T}^{\rm miss} > 200 \,{\rm GeV}$, and $M_{\rm T2} > 200 \,{\rm GeV}$ called the low $H_{\rm T}$ region,
- $H_{\rm T} \ge 750 \,{\rm GeV}$, $E_{\rm T}^{\rm miss} > 30 \,{\rm GeV}$, and $M_{\rm T2} > 125 \,{\rm GeV}$ called the high $H_{\rm T}$ region.

*Look for excess in invariant mass distribution of two b-jets

