

Higgs results from CMS

A. Nikitenko, Imperial College, London SUSY 2014, 22 July.

Few words about CMS reconstruction

19.7 fb⁻¹ (8 TeV)

Reconstruction: photons

- variation of crystal transparency is monitored every 40 min with laser system
- energy scale is obtained with MC photons using multivariate regression technique
 - input: cluster shape variables, E/H, (η,φ),
 Nvtx, PU density
- Finally, reconstructing e's as γ's in Z→ee events obtain:
 - corrections of energy in data to reproduce MC $m_{\rm ee}$ peak position
 - smearing of MC energy to reproduce m_{ee} resolution
 - take into account imperfect modelling of e/γ difference in MC:
 - Imperfect description of tracker material
 - Non uniformity of light collection
 - G4 model

 $\sigma_{\rm eff}(m_{\gamma\gamma}) = [1.0-2.6] \, {\rm GeV}$

120

130

140

150

170

m_{γγ} (GeV)

160

-200

100

110

Reconstruction: *electrons*

- Momentum scale is obtained with MC electrons:
 - combined ECAL + tracker information using MVA regression technique
- **Correct discrepancy between data and simulation** on the momentum scale and resolution using $Z \rightarrow ee$ events
 - dominant sources of discrepancy
 - residual tracker misalignment
 - imperfect corrections of the crystal transparency loss
- Validate with J/ ψ , Y(1S)->ee for e's p_T < 20 GeV

 $\sqrt{s} = 8 \text{ TeV}$

- Absolute scale and resolution is obtained with $Z \rightarrow \mu \mu$ and low mass di-muon resonances
 - main source of data-MC disagreement is residual tracker misalignment
 - p_{T} resolution in the momentum range relevant for H→ZZ->4ℓ analysis:
 - 1.3-2.0 % barrel
 - 6 % endcap

• Reconstruction: *b-jets*

Fake rate: for 80 < $p_{T}{}^{j}$ < 120 GeV, $|\eta|$ < 2.4

	b tagger	misidentification probability	SF_{light}
	JPL	0.0944 ± 0.0004	$1.03 \pm 0.01 \pm 0.07$
	CSVL	0.0990 ± 0.0004	$1.10 \pm 0.01 \pm 0.05$
	JPM	0.0105 ± 0.0002	$1.10 \pm 0.02 \pm 0.20$
	CSVM	0.0142 ± 0.0002	$1.17 \pm 0.02 \pm 0.15$
	TCHPT	0.0026 ± 0.0001	$1.27 \pm 0.06 \pm 0.27$
	JPT	0.0013 ± 0.0001	$1.11 \pm 0.07 \pm 0.31$
	CSVT	0.0016 ± 0.0001	$1.26 \pm 0.07 \pm 0.28$

three operational points for b-tagging with Combined Secondary Vertex algorithm

CSVM efficiency vs p_T of b-jets

Reconstruction: jets, E_T^{miss}

- PF (+JPT, Trk, Calo) jets anti-k_T R=0.5
- PU jet reductions
 - most useful within the tracker acceptance
- PU mitigation algos for E_T^{miss}

Layout for Higgs result presentation

- measurements of h properties
 - mass, width, spin/CP
 - consistency with SM couplings to bosons and fermions
- Searches for BSM Higgs boson(s)
 - non-SM h decays
 - other Higgs bosons
- Rare SM h decays

References to CMS publications are in backup slides

Measurement of h properties

How mass, spin/CP are measured in $h \rightarrow ZZ \rightarrow 4\ell$ and $h \rightarrow \gamma\gamma$ analyses

h boson mass

 $m^{ZZ}_{h} = 125.6 \pm 0.4 (stat.) \pm 0.2 (syst.)$ $\mu = 0.94 \pm {}^{0.26}_{0.23} (stat.) \pm {}^{0.13}_{0.09} (syst.)$ $m_{h}^{\gamma\gamma}$ = 124.72±0.31(stat.)±0.15(syst.) μ =1.14±^{0.26}_{0.23}

Combined $m_h = 125.0 \pm 0.30 \text{ GeV}$

h signal strength at best fit mass

• $\mu = 1.00 \pm 0.13$

h spin/CP CP even vs CP odd; spin 0 vs spin 1 or spin 2

 $h \rightarrow ZZ \rightarrow 4\ell + H \rightarrow WW \rightarrow \ell \nu \ell \nu$

Pseudoscalar boson, spin-one and spin-two hypotheses are excluded at 99.9% C.L. or higher

CMS (preliminary)

€___ ŧ٩ λŤ ЪĒ t√² ↑ t√² †25 ↑ <u>1</u> 10 10 10 10 10 a→ 2, , 1 1 2 3 t∛P ↑ র্মি শ tv, †2 ↑5 **A**→2⁺ <u>a</u> 10 21 21 21 21 रीत • दि • दि . ₹ 2

Î Î

MS data

 $\pm 1\sigma$

 $0^{+} \pm 2\sigma$

 $0^{+} \pm 3\sigma$

120

40

20

0

-20

-40

-60

h→γγ: 0⁺ vs 2⁺

Measuring CP-odd fraction with $h \rightarrow ZZ \rightarrow 4\ell$ (I)

$$A(X_{J=0} \rightarrow V_1 V_2) \sim$$

a₁, a₂ - CP-even couplings a₃ – CP-odd couplings Λ_1 – scale of new physics

- assuming a₃ to be constant
- a₂=0 (no CP-even high dim.)

$$\sim v^{-1} \left(\left[a_1 - e^{i\phi_{\Lambda_1}} \frac{q_{Z_1}^2 + q_{Z_2}^2}{(\Lambda_1)^2} \right] m_Z^2 \epsilon_{Z_1}^* \epsilon_{Z_2}^* \right. \\ + a_2 f_{\mu\nu}^{*(Z_1)} f^{*(Z_2),\mu\nu} + a_3 f_{\mu\nu}^{*(Z_1)} \tilde{f}^{*(Z_2),\mu\nu} \\ + a_2^{Z\gamma} f_{\mu\nu}^{*(Z)} f^{*(\gamma),\mu\nu} + a_3^{Z\gamma} f_{\mu\nu}^{*(Z)} \tilde{f}^{*(\gamma),\mu\nu} \\ + a_2^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_1)} f^{*(\gamma_2),\mu\nu} + a_3^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_1)} \tilde{f}^{*(\gamma_2),\mu\nu} \right)$$

fraction of CP-odd contribution:

$$f_{a3} = \frac{|a_3|^2 \sigma_3}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + \tilde{\sigma}_{\Lambda_1} / (\Lambda_1)^4}$$

$$\frac{|a_i|}{|a_1|} = \sqrt{\frac{f_{ai}}{f_{a1}}} \times \sqrt{\frac{\sigma_1}{\sigma_i}} \qquad \sigma_1/\sigma_3 = 6.36$$

a₃/a₁ = [-2.05,2.19] observed

Measuring CP-odd fraction with $h \rightarrow ZZ \rightarrow 4\ell$ (II)

- Small f_{a3} does not necessary mean small CPodd admixture
 - observables involving the Higgs-gauge couplings project on the CP-even component
 - better to look into observables with Higgsfermion couplings

Single top+h, $h \rightarrow \gamma \gamma$ analysis

- Due to interference pp→tqh process is sensitive to both magnitude and sign of y_{tth}
- tth and th can be used to measure scalar and pseudoscalar h-top couplings

Upper limit = 4.1 x expected cross-section with k_t=-1.

Width of h(125) boson using off-shell H production and ZZ decay

- $\sigma_{i-h(on-shell)-f} \sim g_i^2 g_f^2 / \Gamma_h$
- $\sigma_{i->h(off-shell)->f} \sim g_i^2 g_f^2$
- $\sigma_{h-gg->ZZ \text{ interference}} \sim g_i g_f$
- Fit on- and off-shell mass region
 - varying $g_i^2 g_f^2$ and Γ_h
 - assuming SM off/on-shell yield ratio

10

20

30

40

68% CL

60

 $\Gamma_{\rm H}$ (MeV)

50

Higgs boson couplings at LHC

- determination of total width impossible without further assumptions
- not all final states are accessible
- what is done so far:
 - perform fits to coupling strength modifiers to check consistency with SM
 - LHC HXSWG Recommendations, benchmark models

Channel	Significance (σ)		Best-fit
(m_H = $125\mathrm{GeV}$)	Expected	Observed	μ
$VH \to b\bar{b}$	2.3	2.1	1.0 ± 0.5
${\rm H} \rightarrow \tau \tau$	3.7	3.2	0.78 ± 0.27
Combined	4.4	3.8	0.83 ± 0.24

Some benchmark parameterizations of Higgs boson couplings

- k_v common scale factor for vector boson couplings
- k_f common scale factor for fermion couplings
- assuming no invisible and undetectable widths

 k_γ, k_g – probing loop structure assuming no invisible or undetectable width

Constraining h→BSM with "visible" modes

BR_{BSM} < 0.58 at 95% CL

Non-SM h decays: searches for h→invisible with VBF h, Zh (Z->ℓℓ,bb)

Detection of Dark Matter

most sensitive mode qq'→qq'h (VBF h)

0.5

m_H [GeV]

VBF h \rightarrow invisible: offline signal selections and topology

- two jets p_T>50 GeV, |η|<4.7
- m_{jj} > 1100 GeV
- $\Delta \eta_{jj} > 4.2$
- E_T^{miss} > 130 GeV
- $\Delta \phi_{jj} < 1.0$
- Central Jet Veto (CJV)

Signal region, with CJV (x,y view)

Interpretation of H->invisible direct search in Higgs-portal Dark Matter models

Non-SM h decays: LFV with $h \rightarrow \mu \tau$

- Events are subdivided on 0, 1, 2 jet categories
- μτ_e, μτ_h topologies
- m_h is reconstructed in collinear approximation

~ 2.5 σ access

Searches for other Higgs bosons

MSSM Higgs bosons

- five Higgs bosons in MSSM:
 - two CP-even h, H; one CP-odd A, two charged H^{+/-}
 - what is discovered as state of 125 GeV, h or H ?

Landscape of BSM Higgs channels in MSSM

• *High tan* β : $\phi \rightarrow \tau \tau$, $\phi \rightarrow \mu \mu$; H⁺ $\rightarrow \tau \nu$, tb

• Intermediate $\tan \beta$: $-H/A \rightarrow \chi_i^0 \chi_j^0, \chi_i^+ \chi_j^ -H^+ \rightarrow \chi_i^+ \chi_j^0$

• Low tan β : A \rightarrow Zh; H \rightarrow hh, tt; H $^+\rightarrow$ cs, cb, $\tau\nu$, tb, Wh

$H \rightarrow hh \rightarrow \gamma \gamma bb$

- Search strategy:
 - looking for signal in $m_{\gamma\gamma}$ distribution for $\gamma\gamma bb$ events selected within m_{bb} and $m_{\gamma\gamma bb}$ mass windows
- In hMSSM (A. Djouadi et.al. arXiv:1307.5205):
 - σ (gg→H)xBR(H→hh→γγbb)=2.9 fb for m_A=300 GeV, tanβ=2
 - close to observed limit !

$tt \rightarrow bWbH^+, H^+ \rightarrow cs, m_{H^+} < m_t$

- Search strategy:
 - trigger with muon from t->Wb-> $\mu\nu$ b decay
 - search for bump in di-jet mass distribution for jets from 2nd top decay
 - kinematic fit with top mass constraint

CMS Preliminary, $\sqrt{s} = 8$ TeV, 19.7 fb⁻¹

h,H,A→ττ

split events into b-tag and no-b-tag categories

- model independent limits
- m_A-tanβ exclusions in new benchmark scenarios (M.Carena at al. arXiv:1302.7033)

Searches for heavy H decays into ZZ and WW

Interpretation in the Additional EW singlet model (h, H):

$$\begin{split} & \sigma_{h} \texttt{=} \texttt{c} \times \sigma_{h, \mathsf{SM}} \\ & \Gamma_{h} \texttt{=} \texttt{c} \times \Gamma_{h, \mathsf{SM}} \\ & \texttt{BR}_{h, \mathsf{i}} \texttt{=} \texttt{BR}_{h, \mathsf{SM}, \mathsf{i}} \end{split}$$

 $σ_{H}=c' × σ_{H,SM}$ $\Gamma_{H}=c' / [1-BR_{H,new}] \Gamma_{H,SM}$ $BR_{H,i} = [1-BR_{H,new}] BR_{H,SM,I}$ $c^{2}+c'^{2}=1$ $c'^{2}=1-\mu_{h}$ $\mu_{H}=c'^{2}[1-BR_{H,new}]$

Rare SM h decay

Decay mode	limit σ/σ _{sm}	
h→γ*γ→μμγ	~ 10	
h→Zγ	~10	
h→μμ	7.4	

Resent result on tth, h->bb: limit 3.3 σ_{SM} at 95 % C.L.

- Not rare, but difficult and very important channel
 supposed to be the hot subject with 13 TeV data
- $1\ell + \ge 5$ jets or $2\ell + \ge 4$ jets with ≥ 2 b-tagged jets
- ME method based on LO MadGraph

– must use NLO generation in Run2 analyses !

Conclusions

- Very reach physics program for BSM Higgs boson searches and h(125) boson measurements at LHC
- We expect to have another discovery in the Higgs sector during LHC or HL-LHC operation

References to CMS results shown

- h->ZZ->4l, arXiv:1312.5353 Phys. Rev. D 89 (092007) , width: PAS-14-002
- Tensor structure from H->WW and combined with H->ZZ; HIG-14-012, HIG-14-014
- h->γγ, (p)
- h->WW, arXiv:1312.1129, JHEP 01 (2014) 096
- Combination for h decays to fermions, HIG-13-033, arXiv:1401.6527
 - h->ττ , arXiv:1401.5041, JHEP 05 (2014) 104
 - Vh, h->bb , arXiv:1310.3687, Phys. Rev. D 89, 012003 (2014)
- tth combination, HIG-13-029 (to be paper), ttH with ME HIG-14-010
- pp->qth, h->γγ HIG-14-001, h->bb HIG-14-015
- h->Zγ/γ*γ->**ℓℓ**γ, h->μμ, ee, arXiv:1307.5515, HIG-14-003, HIG-13-007
- h->invisible, arXiv:1404.1344
- h->μτ, HIG-14-005
- φ->ττ, μμ HIG-13-021, HIG-13-024
- H->hh->γγbb, HIG-13-032
- H->hh, A->Zh with multi-leptons and di-γs, HIG-13-025
- Heavy X->γγ, HIG-14-006
- H^+ -> τv with τ_h , no CADI line yet
- H⁺->tb, τν (with τ_ℓ), HIG-13-026
- H⁺->cs, HIG-13-035
- H->WW,ZZ, heavy Higgs combination HIG-13-031,
 - heavy Higgs HIG-14-007 (ZZ->2l2q),14-008 (WW->InuJ), HIG-13-027(jj)/008 (J) (WW->Inujj), HIG-13-014 (H-ZZ->202)
- Couplings from combination, HIG-14-009

Constraining BR(h→inv) using direct h→inv searches AND "visible" modes

BR_{invisible} < 0.50 at 95% CL ("invisible" - any decay mode that goes into "non-interacting" particles)

Low tanβ: H->hh and A->Zh with multi-lepton and di-photon final states

- Limits on σxBr for gg->H->hh (gg->A->Zh) are given assuming SM BRs for h and no contribution from gg->A->Zh (gg->H->hh)
- In hMSSM (A. Djouadi et.al. arXiv:1307.5205):
 - σ (gg->A)BR(A->Zh)=1.7 pb for m_A=300 GeV, tanβ=2.0 close to observed limit !
 - σ(gg->H)BR(H->hh)=3.9 pb for m_A=300 GeV, tanβ=1.0 lower than observed limit

Background estimation in $\Phi ightarrow au au$

Constraining "invisible" and "undetectable" modes using direct h->inv searches AND "visible" modes

BR_{undet} < 0.53 at 95% CL ("undetectable" - any mode, SM or BSM, that can't be seen, e.g. due. to bkg or other reasons)