

Left-right supersymmetry at the LHC

Fuks Benjamin

CERN - IPHC - U. Strasbourg

Based on works with:

- A. Alloul, M. Frank & M. Rausch [JHEP 1310 (2013) 033]
- A. Alloul, L. Basso, M. Krauss & W. Porod [in arXiv:1405.1617]

SUSY 2014 @ Manchester

July 19-26, 2014

Motivations for studying left-right supersymmetry

Why supersymmetry? Supersymmetry naturally arises from Noether and spin-statistics theorems Unifies internal and external symmetries Elegant solution to the hierarchy problem Provide (in general) a dark matter candidate Gauge coupling unify at higher scales Why left-right symmetry? Explanation for neutrino mass generation Possible embedding in grand-unified theories Possible solution to the strong CP problem Why left-right supersymmetry? Merging the advantages of both supersymmetry and left-right symmetry Less constrained by current data

Interesting questions - outline

W' constraints

Summary

Model description

Field content and representation under SU(3)_c x SU(2)_L x SU(2)_R x U(1)_{B-L} * Matter sector: $SU(2)_L$ and $SU(2)_R$ doublets of (s) fermions $(Q_L) = \begin{pmatrix} u_L \\ d_L \end{pmatrix} = (\mathbf{3}, \mathbf{2}, \mathbf{1}, \frac{1}{\mathbf{3}})$ $(Q_R) = \begin{pmatrix} u_R^{\mathbf{c}} & d_R^{\mathbf{c}} \end{pmatrix} = (\mathbf{\bar{3}}, \mathbf{1}, \mathbf{2}^*, -\mathbf{\bar{3}})$ $(L_L) = \begin{pmatrix} \nu_L \\ \ell_L \end{pmatrix} = (\mathbf{1}, \mathbf{2}, \mathbf{1}, -\mathbf{1}) \qquad (L_R) = \begin{pmatrix} \nu_R^{\mathbf{c}} & \ell_R^{\mathbf{c}} \end{pmatrix} = (\mathbf{1}, \mathbf{1}, \mathbf{2}^*, \mathbf{1})$ ✤ Gauge sector: $SU(3)_c \to (\tilde{g}, g_\mu) \qquad SU(2)_L \to (\tilde{W}_L, W_{L\mu}) \qquad SU(2)_R \to (\tilde{W}_R, W_{R\mu}) \qquad U(1)_{B-L} \to (\tilde{\hat{B}}, \hat{B}_\mu)$ Complicated Higgs sector (depends on the symmetry-breaking mechanism) * Two pairs of SU(2) triplets (parity preservation, anomaly cancellation, etc.) Two Higgs bidoublets (necessary for non-trivial quark mixings) One gauge singlet (R-parity conservation) S = (1, 1, 1, 0) $(\Phi_1) = \begin{pmatrix} \Phi_1^0 & \Phi_1^+ \\ \Phi_1^- & \Phi_1'^0 \end{pmatrix} = (\mathbf{1}, \mathbf{2}, \mathbf{2}^*, \mathbf{0}) \qquad (\Phi_2) = \begin{pmatrix} \Phi_2'^0 & \Phi_2^+ \\ \Phi_2^- & \Phi_2^0 \end{pmatrix} = (\mathbf{1}, \mathbf{2}, \mathbf{2}^*, \mathbf{0})$ $(\Delta_{1L}) = \begin{pmatrix} \frac{\Delta_{1L}^-}{\sqrt{2}} & \Delta_{1L}^0\\ \Delta_{1L}^{--} & \frac{-\Delta_{1L}^-}{\sqrt{2}} \end{pmatrix} = (\mathbf{1}, \mathbf{3}, \mathbf{1}, -2) \qquad (\Delta_{1R}) = \begin{pmatrix} \frac{\Delta_{1R}^-}{\sqrt{2}} & \Delta_{1R}^0\\ \Delta_{1R}^{--} & \frac{-\Delta_{1R}^-}{\sqrt{2}} \end{pmatrix} = (\mathbf{1}, \mathbf{1}, \mathbf{3}, -2)$ $(\Delta_{2L}) = \begin{pmatrix} \frac{\Delta_{2L}^+}{\sqrt{2}} & \Delta_{2L}^{++} \\ \Delta_{2L}^0 & \frac{-\Delta_{2L}^+}{\sqrt{2}} \end{pmatrix} = (\mathbf{1}, \mathbf{3}, \mathbf{1}, 2) \qquad (\Delta_{2R}) = \begin{pmatrix} \frac{\Delta_{2R}^+}{\sqrt{2}} & \Delta_{2R}^{++} \\ \Delta_{2R}^0 & \frac{-\Delta_{2R}^+}{\sqrt{2}} \end{pmatrix} = (\mathbf{1}, \mathbf{1}, \mathbf{3}, 2)$

Left-right supersymmetry at the LHC

LHC simulation setup

0. Model implementation (most general Lagrangian) in FEYNRULES [Christensen & Duhr ('09); Duhr & BF ('11)] [Alloul, Christensen, Degrande, Duhr & BF ('14)]					
Generation of a UFO library [Degrande, Duhr, BF, Grellscheid, Mattelaer & Reiter ('12)]					
I. Event generation with MADGRAPH5_aMC@NLO [Alwall et al. (14)]					
Both signal and backgrounds at leading order Precision in the normalization: (N)NLO+(N)NLL inclusive results (if available)					
2 Parton showering & hadronization with Pythia [Sigstrand Mrenna & Skands ('06: '08)]					
 Precision in the shapes: multiparton matrix-element MLM merging techniques [Mangano et al. ('07)] 					
Ϋ					
3. Fast detector simulation with DELPHES (when used) [de Favareau et al ('13)]					
``					
4. Event analysis with MADANALYSIS 5 [Conte, BF & Serret ('13); Conte, Dumont, BF & Wymant ('14)]					
Parton-level and reconstructed-level analyses					

Benchmark scenarios for electroweakino production

Classes of scenarios for the lightest electroweakinos

Summary

Single lepton channel

Signal region definition

- Small signal cross sections (including branching ratio)
 More leptons are generally expected
- One hard isolated electron or muon
- b-jet veto
- Reconstructed W-boson transverse mass: larger for the signal
- Missing transverse energy: larger for the signal
- Hardness of the signal lepton
 - \succ Expected to be harder in the signal case

Results

Scenario	Signal (S)	Background (B)	$S/\sqrt{S+B}$
SI.1	94.9 ± 8.2		0.40 ± 0.08
SI.2	56.1 ± 7.8	55332 ± 247	0.24 ± 0.07
SII (200 GeV sleptons)	1594 ± 44		6.68 ± 0.36
SII (400 GeV sleptons)	3334 ± 63		13.8 ± 0.5
SIII	31.8 ± 6.2		0.13 ± 0.05

- Unsensitive to no mixing scenarios (SI)
 - Too small signal cross sections
- Very sensitive to moderate mixing scenarios (SII)
 Better for heavier sleptons
- No sensitivity to compressed spectra (SIII)

Dilepton and multilepton channels

- Signal region definition
 - Moderate signal cross sections (including branching ratio)
 - > 20%-30% of the cases in for no or moderate mixings
 - Two hard isolated electrons or muons

Results

Scenario	Signal (S)	Background (B)	$S/\sqrt{S+B}$
SI.1	41.2 ± 6.8		0.97 ± 0.32
SI.2	53.9 ± 7.7		1.27 ± 0.36
SII (200 GeV sleptons)	2610 ± 56	1748.3 ± 41.7	39.5 ± 1.2
SII (400 GeV sleptons)	2686 ± 57		40.3 ± 1.2
SIII	2.6 ± 1.8		0.06 ± 0.08

Signal region definition

- Moderate signal cross sections (including branching ratio)
 - \succ Lower backgrounds
- * At least three hard isolated electrons or muons

Results

Scenario	Signal (S)	Background (B)	$S/\sqrt{S+B}$
SI.1	65.4 ± 8.4		4.64 ± 1.03
SI.2	108 ± 10		6.98 ± 1.09
SII (200 GeV sleptons)	259 ± 18	133.4 ± 11.5	13.1 ± 1.3
SII (400 GeV sleptons)	289 ± 19		14.1 ± 1.3
SIII	pprox 0		-

- b-jet veto; Z-boson veto
- Large missing energy requirement
- * Selection on the p_T of the leptons
- Unsensitive to no mixing scenarios (SI)
 - \succ Better results than for the single lepton mode
- Very sensitive to moderate mixing scenarios (SII)
 Independent of the slepton mass
- .08 * No sensitivity to compressed spectra (SIII)
 - b-jet veto
 - Large missing energy requirement
 - Selections on the two leading lepton pT
 - Sensitive to no mixing scenarios (SI)
 - Very sensitive to moderate mixing scenarios (SII)
 - \succ Independent of the slepton mass
 - Not as good as for the dilepton mode
 - * No sensitivity to compressed spectra (SIII)

Left-right supersymmetry at the LHC

Comparing with the MSSM

Left-right supersymmetry at the LHC

Extra charged gauge bosons ($W' = W_R$)

Particularities of the left-right supersymmetric case

- * If the extra gauge bosons are heavy enough, they can decay into superpartner pairs
- * Reduction of the existing bounds on the W', that assume specific branchings

How are existing searches constraining left-right supersymmetric models?

Focusing on other W' searches relevant for left-right supersymmetric models
 CMS PAS-EXO-12-059: dijet resonances
 CMS PAS-B2G-12-010: top-bottom production

CMS PAS-EXO-12-017: decay to right-handed neutrinos further decaying into a ljj system

Summary

Two-body decays of the W_R

Left-right supersymmetry at the LHC

Interplay of the W_R with right-handed neutrinos

Summary

