

Closing in on the Tip of the cMSSM Stau Coannihilation Strip

(with J. Ellis, F. Luo and J. Marrouche; arXiv:1404.5061)

Nishita Desai Institut für Theoretische Physik (ITP), Heidelberg

insulut fur theoretische Physik (HP), meidelberg

July 21, 2014; SUSY 2014

What is the co-annihilation strip?

How does one probe this theory? - accelerator experiments

What are the LHC detectors capable of?

What kind of searches are relevant?

How do we use the results? What can we do in the future?

Mandatory SUSY spectrum slide

What is the cMSSM?

 $m_0, m_{1/2}, A_0, \tan\beta, sign(\mu)$

Modes of annihilation

What regions of CMSSM parameter space are favoured?

 $m_{1/2}$

we use: $0.115 < \Omega_{\chi} h^2 < 0.125$

Higgs mass and jets+MET constraints

Decays of the stau

Dependence of lifetime on stau-neutralino mass difference

Dependence of lifetime on stau mixing angle

Branching fractions for different mass difference

Lifetime range for our four benchmark scenarios

Effect of MET and Meff cuts

	Requirement	Signal Region									
	Itequitement	2jl 2jm 2jt 2jW		7	3j 4jW						
	$E_{\rm T}^{\rm miss}[{\rm GeV}] >$	160									
	$p_{\rm T}(j_1) \; [{\rm GeV}] >$	130									
	$p_{\rm T}(j_2) \; [{\rm GeV}] >$	60									
arXiv:1405./8/5	$p_{\rm T}(j_3) \; [{\rm GeV}] >$	_					60	60 40			
	$p_{\rm T}(j_4) \; [{\rm GeV}] >$	_						40			
	$\Delta \phi(\text{jet}_{1,2,(3)}, \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$				0.4						
	$\Delta \phi(\text{jet}_{i>3}, \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$			_			0.2				
	W candidates		—		$2(W \rightarrow$	(j)	_	$(W \rightarrow j$	(W) + (W)	$f \rightarrow jj)$	
	$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} \ [{\rm GeV}^{1/2}] >$	8	1	5				_			
	$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j})>$		_		0.25	,	0.3		0.35		
	$m_{\rm eff}({\rm incl.}) \ [{\rm GeV}] >$	800	1200	1600	1800)	2200		1100		
mSUGRA/CMSSM: $\tan\beta = 30$, $A_0 = -2m_0$, $\mu > 0$			Signal Region								
900 - 4jt 4jt 4jt 4jt 4jt 4jt 4jt	LAS	4jl-	4jl	4jm	4jt	5j	6jl	6jm	6jt	6jt+	
	$dt = 20.3 \text{ fb}^{-1} \sqrt{s} = 8 \text{ TeV}^{-1}$	160									
800 - 3 / 1 4jt 4jt 4jt 4jt 4jt 6jt+4jt	nton 2 Gioto	130									
	60										
7	60										
3j 3j 4jt 4jt 4jt 4jt 4jt 6jt+6jt+6jt+6jt-6jt 6jt 6jt 6jt 6jt 6jt						60					
600 2jt - 9j - 4jt 6jt -				_				60			
				—					60		
500 2jin 2jin 2jit 6ji 6jin 6ji 6ji 6ji 6ji 6ji 6ji 6ji 6ji 6ji						0.4					
						0.2					
400	6im 6im 6im 6im		10		, , , , , , , , , , , , , , , , , , ,		—				
			-	0.4	0.25		0.2		0.25	0.15	
1000 2000 3000 40	00 5000 6000	700	1000	1300	2200	1200	900	1200	1500	1700	
m _o [GeV]											

The long-lived particle search (CMS-EXO-12-026)

I gluino; 100 % gg
✓ gluino; 50% gg

10⁻²

Mass	M req.	σ (pb)	b) ($\sqrt{s} = 7 \text{ TeV}$) σ (pb) ($\sqrt{s} = 8 \text{ TeV}$)			$\sigma \text{ (pb) } (\sqrt{s} = 8 \text{ TeV})$			$\overline{\sigma} = 7 \text{ TeV}$ $\sigma \text{ (pb) } (\sqrt{s} = 8 \text{ TeV})$ $\sigma/\sigma_{\text{th}} (7+8)$			7+8 TeV)
(GeV/c^2)	(GeV/c^2)	Exp.	Obs.	Acc.	Exp.	Obs.	Acc.	Exp.	Obs.			
Direct+indirect produced stau — tracker+TOF analysis												
126	>40	0.0046	0.0035	0.29	0.0042	0.0042	0.25	0.0074	0.0065			
308	>190	0.00094	0.0015	0.63	0.00029	0.00028	0.56	0.16	0.21			
494	>330	0.00079	0.00084	0.74	0.00023	0.00024	0.66	1.9	1.9			
Direct produced stau — tracker+TOF analysis												
126	>40	0.0056	0.0046	0.26	0.0044	0.0043	0.24	0.18	0.16			
308	>190	0.0011	0.0017	0.54	0.00035	0.00035	0.46	0.62	0.66			
494	>330	0.00084	0.00088	0.69	0.00025	0.00026	0.61	4.7	5.0			

The disappearing track search (ATLAS-CONF-2012-034)

TABLE III. Numbers of observed and expected background events as well as the probability that a background-only experiment is more signal-like than observed (p_0) and the model-independent upper limit on the visible cross-section ($\sigma_{vis}^{95\%}$) at 95% CL.

	$p_{\rm T}^{\rm track} > 75 ~{ m GeV}$	$p_{\rm T}^{\rm track} > 100 ~{ m GeV}$	$p_{\rm T}^{\rm track} > 150~{ m GeV}$	$p_{\rm T}^{\rm track} > 200 ~{ m GeV}$
Observed events	59	36	19	13
Expected events	48.5 ± 12.3	37.1 ± 9.4	24.6 ± 6.3	18.0 ± 4.6
p_0 value	0.17	0.41	0.46	0.44
Observed $\sigma_{\rm vis}^{95\%}$ [fb]	1.76	1.02	0.62	0.44
Expected $\sigma_{\rm vis}^{95\%}$ [fb]	$1.42_{-0.39}^{+0.50}$	$1.05\substack{+0.37 \\ -0.28}$	$0.67\substack{+0.27 \\ -0.19}$	$0.56^{+0.23}_{-0.16}$

20

പ

Interpreting the ATLAS and CMS results

Validation of jets+MET simulation

Stau fractions for the search criteria

Exclusions for $\tan \beta = 40$; $A_0 = 2.5m_0$

Results

What next?

Predictions for 14 TeV LHC run

Conclusions

- LHC jets+MET search slightly weakened in region where staus are long-lived. The limit is close to probing the tip of the co-annihilation strip for tanß = 10.
- The stable track search for direct stau production (model ind.) rules out stau masses up to 336 345 GeV for m_{1/2} values of 800-850 GeV (stronger than the MET search!)
- This is improved to m_{1/2} values of 930-1100 GeV when all stau production modes are taken into account.
- ◆ The model independent track search will be able to rule out the full strip for tanß = 40 with 75 fb⁻¹ at 14 TeV.
- The disappearing track closes the gap between these two, but is not very sensitive, gives m_{1/2} limit of about 400 GeV.