CP violation: Recent Results from BABAR Presented at SUSY2014

Roger Barlow representing the BaBar collaboration

Huddersfield University

25th July 2014

< 🗇 🕨 <

A brief history of CP violation in particle physics

Discovery 1964 Fitch and Cronin (PRL **13**:138, 1964; Nobel Prize 1980) Small effect (0.3%) for s quark: $K_L^0 \rightarrow \pi^+\pi^-$

Nothing much happened for almost 40 years: $K_I^0 \to \ell^{\pm} \pi^{\mp} \nu$, $K_I^0 \to \pi^0 \pi^0$

Seen in B mesons (b quark): BaBar and Belle

PRL **81** 091801, 2001, Nobel prize 2008 ¹ Large effects (several %). Many measurements. Mainstream $\Upsilon(4S) \rightarrow B^0 \overline{B^0}$ 1st decays to CP eigenstate, 2nd tagged as *b* or \overline{b} Plot decay time dependences.

BaBar: PRD79:072009,2009

Reported in D mesons (c quark)

¹For Kobayashi and Maskawa

Roger Barlow (Huddersfield University) CP Violation: recent results from BABAR

25th July 2014 2 / 16

Overview

Talk covers 7 non-mainstream beauty results and 3 charm results

Caused by complex weak phase in:

Mixing Indirect CP violation Violation of CP quantum number conservation

Decays

Direct CP violation E.g. asymmetry in $B^0 \to K^+\pi^-$ / $\overline{B^0} \to K^-\pi^+$ is $9.8 \pm 1.2\%$

Interference between mixing and decays

Different time dependence

PEP-II: a 'B factory'

Results from 471 \times 10⁶ Υ (4*S*) decays produced with speed 0.5*c* in the lab Luminosity 1.2 \times 10³⁴ cm⁻²s⁻¹ Currents 2-3 amps Technical triumph. Design goals greatly exceeded.

The BABAR detector

Precision vertex chamber, charged particle tracking, PID using DIRC, precision EM calorimeter, muon detector.

イロト イ押ト イヨト イヨト

Direct CP violation in $B^\pm o K^{*\pm}(892)\pi^0$ new result - preliminary

Select $B^{\pm} \rightarrow K_{s}^{0} \pi^{\pm} \pi^{0}$. BR (45.9 \pm 2.6 \pm 3.0 \pm 8.6) \times 10⁻⁶ First measurement! Final error uncertainty due to signal model Overall $A_{CP} = \frac{N^{+} - N^{-}}{N^{+} + N^{-}} = 0.07 \pm 0.05 \pm 0.03 \pm 0.04$ Fit Dalitz plot using isobar model: $K^{*0}(892)\pi^{+}, K^{*+}(892)\pi^{0}, K_{s}^{0}\rho^{+}, etc$

Direct CP violation in $B^{\pm} \rightarrow K^{(*)\pm}D^{(*)0}$: global fit to γ Phys Rev D **87** 052015 (2013)

$B^0 \rightarrow \pi^+\pi^-\pi^0$: fit to α Phys. Rev. D **88** 012003 (2013)

Dalitz plot: fit $\rho^{\pm}\pi^{\mp}$ and $\rho^{0}\pi^{0}$. Transform to square plot to include efficiencies

Time dependent fit Time dependent fit $\propto 1+C\cos(\Delta_m t)+S\sin(\Delta_m t)$ C terms are direct CP, S terms are interference Results interpretable in terms of CKM angle α α (deg) Reser Earlow (Huddersfield University) CP Violation: recent results from BABAR 25th July 2014 8 / 16 8

$B \rightarrow X_s \ell^+ \ell^-$ Direct CPV Phys. Rev. Lett. 112, 211802 (2014)

10 different exclusive X_s modes $(K^+, K^+\pi^0, K^+\pi^-, K^+\pi^-\pi^0, K^+\pi^-\pi^+, K^0_S, K^0_S\pi^0, K^0_S\pi^+, K^0_S\pi^+\pi^0, K^0_S\pi^+\pi^-)$ Extrapolation gives branching ratio $(6.73^{+0.70+0.34}_{-0.64-0.25} \pm 0.50) \times 10^{-6}$ for $m^2_{\ell\ell} > 0.1$ $A_{CP} = 0.04 \pm 0.11 \pm 0.01$

$B \rightarrow X_s \gamma$ Direct CPV New result - preliminary

Use charged B mesons and self-tagging neutral B meson decays

Sum over exclusive X_s states Reconstruct 38 (x2) different final states - use 16 with good statistics.

 $\begin{aligned} A_{CP} &= \frac{\Gamma(B^-/\overline{B^0}) - \Gamma(B^+/B^0)}{\Gamma(B^-/\overline{B^0}) + \Gamma(B^+/B^0)} \\ (A_{CP} &= (1.7 \pm 1.9 \pm 1.0)\% \\ \text{consistent with SM prediction} \end{aligned}$

#	Final State	#	Final State
1*	$B^+ \rightarrow K_S \pi^+ \gamma$	20	$B^0 \rightarrow K_S \pi^+ \pi^- \pi^+ \pi^- \gamma$
2*	$B^+ \rightarrow K^+ \pi^0 \gamma$	21	$B^0 \rightarrow K^+ \pi^+ \pi^- \pi^- \pi^0 \gamma$
3*	$B^0 \rightarrow K^+ \pi^- \gamma$	22	$B^0 \rightarrow K_S \pi^+ \pi^- \pi^0 \pi^0 \gamma$
4	$B^0 ightarrow K_S \pi^0 \gamma$	23*	$B^+ \rightarrow K^+ \eta \gamma$
5^{*}	$B^+ \rightarrow K^+ \pi^+ \pi^- \gamma$	24	$B^0 \rightarrow K_S \eta \gamma$
6*	$B^+ \rightarrow K_S \pi^+ \pi^0 \gamma$	25	$B^+ \rightarrow K_S \eta \pi^+ \gamma$
7*	$B^+ \rightarrow K^+ \pi^0 \pi^0 \gamma$	26	$B^+ ightarrow K^+ \eta \pi^0 \gamma$
8	$B^0 \rightarrow K_S \pi^+ \pi^- \gamma$	27*	$B^0 ightarrow K^+ \eta \pi^- \gamma$
9*	$B^0 ightarrow K^+ \pi^- \pi^0 \gamma$	28	$B^0 \rightarrow K_S \eta \pi^0 \gamma$
10	$B^0 \rightarrow K_S \pi^0 \pi^0 \gamma$	29	$B^+ \rightarrow K^+ \eta \pi^+ \pi^- \gamma$
11*	$B^+ \rightarrow K_S \pi^+ \pi^- \pi^+ \gamma$	30	$B^+ ightarrow K_S \eta \pi^+ \pi^0 \gamma$
12^{*}	$B^+ \rightarrow K^+ \pi^+ \pi^- \pi^0 \gamma$	31	$B^0 \rightarrow K_S \eta \pi^+ \pi^- \gamma$
13^{*}	$B^+ ightarrow K_S \pi^+ \pi^0 \pi^0 \gamma$	32	$B^0 ightarrow K^+ \eta \pi^- \pi^0 \gamma$
14^{*}	$B^0 ightarrow K^+ \pi^+ \pi^- \pi^- \gamma$	33*	$B^+ ightarrow K^+ K^- K^+ \gamma$
15	$B^0 ightarrow K_S \pi^0 \pi^+ \pi^- \gamma$	34	$B^0 ightarrow K^+ K^- K_S \gamma$
16^{*}	$B^0 ightarrow K^+ \pi^- \pi^0 \pi^0 \gamma$	35	$B^+ ightarrow K^+ K^- K_S \pi^+ \gamma$
17	$B^+ \to K^+ \pi^+ \pi^- \pi^+ \pi^- \gamma$	36	$B^+ ightarrow K^+ K^- K^+ \pi^0 \gamma$
18	$B^+ ightarrow K_S \pi^+ \pi^- \pi^+ \pi^0 \gamma$	37*	$B^0 ightarrow K^+ K^- K^+ \pi^- \gamma$
19	$B^+ \to K^+ \pi^+ \pi^- \pi^0 \pi^0 \gamma$	38	$B^0 \rightarrow K^+ K^- K_S \pi^0 \gamma$

$B^0 \rightarrow D^{*+}D^{*-}$ Time dependent asymmetry Phys. Rev. D **86** 112006 (2012)

One D^* reconstructed fully from $D^0\pi$ with $D^0 \rightarrow K\pi, K\pi\pi, K\pi\pi\pi, K_S^0\pi\pi$ Second reconstructed partially: combine first with slow pion and requiring missing mass consistent with M_D .

Flavour of other B^0 from identified kaon or lepton.

CP violation in mixing: $B^0 \rightarrow D^{*-} X \ell \nu_{\ell}$ and a kaon tag Phys. Rev. Lett. 111 101802 (2013)

Reminder: CPV in mixing not seen by BaBar: dilepton asymmetry (PRL **96** 251802 (2006)) $| A_{CP} = (1.6 \pm 5.4 \pm 3.8) \times 10^{-3}$ Consistent with $SM(\approx 0)$. Means the DØ result must be due to B_s decays.

Partial reconstruction technique for D^* Tag the other Bthrough kaon (avoids lepton identification systematics)

25th July 2014 12 / 16

Charm: $D^0 \rightarrow K^+ K^-, K^{\pm} \pi^{\mp}, \pi^+ \pi^-$ Phys. Rev. D **87** 012004 (2012)

Compare lifetimes to CP even K^+K^- and $\pi^+\pi^-$ with CP mixed $K^{\pm}\pi^{\mp}$

Rate
$$\Gamma^+$$
 for $D^0 \rightarrow CP_{even}$,
 $\overline{\Gamma}^+$ for $\overline{D}^0 \rightarrow CP_{even}$,
 Γ for $D^0 \rightarrow CP_{mixed}$
 $y_{CP} = \frac{\Gamma^+ + \overline{\Gamma}^+}{2\Gamma} - 1 =$
 $(0.72 \pm 0.18 \pm 0.12)\%$
 $\Delta Y = \frac{\Gamma^+ - \overline{\Gamma}^+}{2\Gamma} =$
 $(0.09 \pm 0.26 \pm 0.06)\%$

Charm: Singly Cabibbo Suppressed $D^{\pm} \rightarrow K^+ K^- \pi^{\pm}$ Phys Rev. D **87** 05210 (2013)

Evaluate charge asymmetry:

$$A_{CP} = (0.37 \pm 0.30 \pm 0.15)\%$$

Also no sign in any of the subregions

(low $M_{K\pi}$, K^* , ϕ , high $M_{K\pi}$) or in isobar-model fits (KK^* , $\pi\phi$, etc)

Charm: $D^{\pm} \rightarrow K^0_S K^{\pm}, D^{\pm}_S \rightarrow K^0_S K^{\pm}, D^{\pm}_S \rightarrow K^0_S \pi^{\pm}$ Phys. Rev. D87 052012 (2013)

Detector charge bias determined from data

 $\begin{aligned} A_{CP}(D^{\pm} \to K_{S}^{0}K^{\pm}) &= (0.13 \pm 0.36 \pm 0.25)\% \\ A_{CP}(D^{\pm}_{S} \to K_{S}^{0}K^{\pm}) &= (-0.05 \pm 0.23 \pm 0.24)\% \\ A_{CP}(D^{\pm}_{S} \to K_{S}^{0}\pi^{\pm}) &= (0.6 \pm 2.0 \pm 0.3)\% \\ \text{All consistent with zero and small SM prediction (0.33 \%).} \end{aligned}$

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

Conclusions

Measurements of CP violation in B mesons continue No sign of CP violation in charm No sign of charge asymmetry as reported by DØ Results give consistent values of CKM matrix α, β, γ angles. Powerful constraints on New Physics models

A (1) > A (2) > A