What next for the CMSSM and NUHM

Improved prospects for superpartner and dark matter detection

arxiv:1405.4289 Leszek Roszkowski, Enrico Maria Sessolo, A.W.

update, improvement and extension of K. Kowalska, et al, arXiv:1302.5956

Andrew Williams (*BayesFITS group*) National Centre for Nuclear Research (NCBJ)

Warsaw, Poland

24th July 2014 SUSY 2014

Grants for innovation. Project operated within the Foundation for Polish Science "WELCOME" co-financed by the European Regional Development Fund

Outline

- Experimental constraints
- * Favoured regions in the CMSSM
- * Prospects for colliders in the CMSSM
- * Different favoured regions in the NUHM
- Prospects for DM detection
- * Conclusions

Experimental Constraints

- HiggsSignals for Higgs mass and signal strengths
- * Resumed top/stop contributions to higgs mass beyond 2-loops via FeynHiggs 2.10.0
- * LHC SUSY searches likelihood map (8TeV ~20fb⁻¹ ATLAS searches via CheckMate)
- * LUX dark matter direct detection likelihood map

Constraint	Mean	Exp. Error	Th. Error	Ref.
$\Omega_\chi h^2$	0.1199	0.0027	10%	[12]
$\sin^2 heta_{ m eff}$	0.23155	0.00015	0.00015	[42]
$\delta \left(g-2 ight)_{\mu} imes 10^{10}$	28.7	8.0	1.0	[16, 17]
${ m BR}\left(\overline{ m B} ightarrow { m X_s}\gamma ight) imes 10^4$	3.43	0.22	0.21	[13]
${ m BR}\left({ m B}_{ m u} ightarrow au u ight) imes 10^4$	0.72	0.27	0.38	[14]
ΔM_{B_s}	17.719 ps^{-1}	0.043 ps^{-1}	2.400 ps^{-1}	[42]
M_W	$80.385{ m GeV}$	$0.015{ m GeV}$	$0.015{ m GeV}$	[42]
$\mathrm{BR}(\mathrm{B_s} \to \mu^+\mu^-) \times 10^9$	2.9	0.7	10%	[15]

Experimental Constraints

- HiggsSignals for Higgs mass and signal strengths
- * Resumed top/stop contributions to higgs mass beyond 2-loops via FeynHiggs 2.10.0
- * LHC SUSY searches likelihood map (8TeV ~20fb⁻¹ ATLAS searches via CheckMate)
- * LUX dark matter direct detection likelihood map

Future reach of CTA

- * Cherenkov Telescope Array: The next generation ground based high energy gamma ray telescope.
- Projected limits available for individual final states (Mathias et.al arxiv:1401.7330)
- * We apply these to the MSSM to generate an indicative limit for σv

CMSSM: model and priors

- * Minimal Supersymmetric Standard Model
- * Universal soft SUSY breaking terms at GUT scale.

Parameter	Description	Range	Distribution
m_0	Universal scalar mass	$0.1, 20 { m ~TeV}$	Log
$m_{1/2}$	Universal gaugino mass	$0.1, 10 { m ~TeV}$	Log
A_0	Universal trilinear coupling	$-20, 20 { m ~TeV}$	Linear
an eta	Ratio of the Higgs vevs	3,62	Linear
$\mathrm{sgn}\mu$	Sign of the Higgs/higgsino mass parameter	+1 or -1	

Nuisance Parameters

Nuisance parameter	Description	Central value	Distribution
M_t	Top quark pole mass	$173.34\pm0.76{\rm GeV}$	Gaussian
$m_b(m_b)^{\overline{MS}}$	Bottom quark mass	$4.18\pm0.03{\rm GeV}$	Gaussian
$lpha_s(M_Z)^{\overline{MS}}$	Strong coupling	0.1185 ± 0.0006	Gaussian
$1/lpha_{ m em}(M_Z)^{\overline{MS}}$	Reciprocal of electromagnetic coupling	127.944 ± 0.014	Gaussian
$\Sigma_{\pi N}$	Nucleon sigma term	$34\pm2{ m MeV}$	Gaussian
σ_s	Strange sigma commutator	$42\pm5{ m MeV}$	Gaussian

CMSSM: Preferred regions

Decreased m0 in higgsino region due to new higgs corrections

Posterior in A-funnel increases due to better fit to higgs mass

Focus point region disfavoured by LUX

Reduced posterior in staucoannihilation region due to LHC constraints

Dark matter mechanisms: stau-coannihilation, A-funnel, focus point, 1TeV Higgsino¹

¹L. Roszkowski, et al, arXiv:0903.1279 TeV higgsino DM in unified models, K. Kowalska, et al, arXiv:1302.5956 TeV higgsino DM in the CMSSM

CMSSM: Preferred regions

Decreased m0 in higgsino region due to new higgs corrections

Posterior in A-funnel increases due to better fit to higgs mass

Focus point region disfavoured by LUX

Reduced posterior in staucoannihilation region due to LHC constraints

Dark matter mechanisms: stau-coannihilation, A-funnel, focus point, 1TeV Higgsino¹

¹L. Roszkowski, et al, arXiv:0903.1279 TeV higgsino DM in unified models, K. Kowalska, et al, arXiv:1302.5956 TeV higgsino DM in the CMSSM

Prospects for colliders

BayesFITS (2014)

7

Shift to A-Resonance region puts squarks and gluinos in reach of future colliders

Prospects for colliders

NUHM: Model and priors

- Independently vary the Higgs mass soft parameters at the GUT scale
- * Allow the squared mass terms to be positive or negative

$m_{H_d}^2/\sqrt{ m_{H_d}^2 }^{(*)}$	Signed GUT-scale soft mass of H_d	$-20, 20 { m ~TeV}$	Linear
$m_{H_u}^2/\sqrt{ m_{H_u}^2 }^{(*)}$	Signed GUT-scale soft mass of ${\cal H}_u$	$-10, 10 { m ~TeV}$	Linear

* Keep other priors the same as the CMSSM

NUHM: preferred regions

Extended stau-coannhiliation strip

NUHM: preferred regions

* More precise calculation of higgs mass has a large impact in both models.

- * More precise calculation of higgs mass has a large impact in both models.
- * CMSSM now features larger posterior in the A-funnel region.

- * More precise calculation of higgs mass has a large impact in both models.
- * CMSSM now features larger posterior in the A-funnel region.
- * LHC limits already cutting into stau-coannihilation region in the CMSSM.

- * More precise calculation of higgs mass has a large impact in both models.
- * CMSSM now features larger posterior in the A-funnel region.
- * LHC limits already cutting into stau-coannihilation region in the CMSSM.
- * LUX disfavouring focus-point region.

- * More precise calculation of higgs mass has a large impact in both models.
- * CMSSM now features larger posterior in the A-funnel region.
- * LHC limits already cutting into stau-coannihilation region in the CMSSM.
- * LUX disfavouring focus-point region.
- * NUHM features an extended stau-coannihilation region.

- * More precise calculation of higgs mass has a large impact in both models.
- * CMSSM now features larger posterior in the A-funnel region.
- * LHC limits already cutting into stau-coannihilation region in the CMSSM.
- * LUX disfavouring focus-point region.
- * NUHM features an extended stau-coannihilation region.
- Higgsino dark matter strongly favoured in both models and can be probed by direct and indirect detection.

- * More precise calculation of higgs mass has a large impact in both models.
- * CMSSM now features larger posterior in the A-funnel region.
- * LHC limits already cutting into stau-coannihilation region in the CMSSM.
- * LUX disfavouring focus-point region.
- * NUHM features an extended stau-coannihilation region.
- * Higgsino dark matter strongly favoured in both models and can be probed by direct and indirect detection.
- * 1 TeV Higgsino dark matter strongly motivates future dark matter analysis at CTA.

Backup: CMSSM and NUHM regions

Backup: Projected limits for CTA

- We take limits obtained for specific final states (Mathias et.al arxiv:1401.7330)
- This implies a limit on the flux of photons from annihilations

$$N_{\rm ann}^{95\%} = t_{\rm obs} \frac{\langle \sigma v \rangle^{95\%}}{8\pi m_{\chi}^2} N_{\gamma,\rm obs} J$$

$$N_{\gamma,\text{obs}} = \int \frac{dN_{\gamma}(E)}{dE} A_{\text{eff}}(E)dE$$

Dependence on final state