Electroweak Effective Operators and Higgs Physics

Chien-Yi Chen, BNL

C.-Y. Chen, S. Dawson, and C. Zhang, PRD 89, 015016

SUSY 2014 University of Manchester, July 25, 2014

Motivations

- We've found the Higgs boson! What can we say about it's couplings to other particles?
- Can electroweak measurements tell us anything about the Higgs couplings?
- Derive bounds from the oblique parameters and the recent Higgs data on the dimension-6 operators.
- Are constraints on coefficients of the effective operators from precision test complementary to those from direct Higgs production measurements?

Oblique parameters

 Most of the effects on electroweak precision observables can be parametrized by S,T and U. [Phys.Rev.D46, 38, Peskin and Takeuchi]

Higgs Data: signal strength

- μ =1 : Standard Model Higgs
- Measuring deviations of the couplings from the SM

 Assume new physics is at a scale (Λ) much higher than that we can probe experimentally.

$$\mathcal{L}_{eff} = \sum_{n=5}^{\infty} \frac{f_n}{\Lambda^{n-4}} \mathcal{O}_n + \dots$$

- Focus on electroweak sector of the SM
- The lowest-dimension operators, O_i, which contribute to processes involving the SM gauge bosons and Higgs doublets are dimension six.
- Assume flavor and CP conservation

• Lagrangian

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\mathrm{SM}} + \frac{f_{DW}}{\Lambda^2} \mathcal{O}_{DW} + \frac{f_{DB}}{\Lambda^2} \mathcal{O}_{DB} + \frac{f_{BW}}{\Lambda^2} \mathcal{O}_{BW} + \frac{f_{\Phi,1}}{\Lambda^2} \mathcal{O}_{\Phi,1} \\ &+ \frac{f_{\Phi,2}}{\Lambda^2} \mathcal{O}_{\Phi,2} + \frac{f_{WWW}}{\Lambda^2} \mathcal{O}_{WWW} + \frac{f_W}{\Lambda^2} \mathcal{O}_W + \frac{f_B}{\Lambda^2} \mathcal{O}_B \\ &+ \frac{f_{WW}}{\Lambda^2} \mathcal{O}_{WW} + \frac{f_{BB}}{\Lambda^2} \mathcal{O}_{BB}. \end{split}$$

• Derive Feynman rules: e.g. HWW

• Four operators that affect the gauge boson two point functions at tree level:

$$\begin{aligned} \text{tree level:} \quad & \mathbb{Z}_{,\gamma} & \longrightarrow_{\mathcal{O}_{WB}} \mathbb{Z}_{,\gamma} \\ \mathcal{O}_{WB} &= -\frac{g^2}{4} \operatorname{Tr}([D_{\mu}, \sigma^a \cdot W^a_{\nu\rho}][D^{\mu}, \sigma^b \cdot W^{b,\nu\rho}]) \\ \mathcal{O}_{DB} &= -\frac{g'^2}{2} (\partial_{\mu} B_{\nu\rho}) (\partial^{\mu} B^{\nu\rho}) \\ \mathcal{O}_{BW} &= -\frac{gg'}{4} \Phi^{\dagger} B_{\mu\nu} \sigma^a \cdot W^{a,\mu\nu} \Phi \\ \mathcal{O}_{\Phi,1} &= (D_{\mu} \Phi)^{\dagger} (\Phi \Phi^{\dagger}) (D^{\mu} \Phi), \end{aligned}$$

$$D_{\mu} = \partial_{\mu} - i \frac{g}{2} B_{\mu} - i \frac{g' \sigma^{a}}{2} W_{\mu}^{a} \qquad B_{\mu\nu} = \partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu}$$
$$W_{\mu\nu}^{\pm} = \partial_{\mu} W_{\nu}^{\pm} - \partial_{\nu} W_{\mu}^{\pm} \mp i g (W_{\mu}^{3} W_{\nu}^{\pm} - W_{\nu}^{3} W_{\mu}^{\pm})$$
$$W_{\mu\nu}^{3} = \partial_{\mu} W_{\nu}^{3} - \partial_{\nu} W_{\mu}^{3} - i g (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-}).$$

 There are six bosonic operators which contribute to the oblique parameters at one loop

$$\begin{split} \mathcal{O}_{WWW} &= -i \frac{g^3}{8} \operatorname{Tr}(\sigma^a \cdot W^{a,\mu}_{\nu} \sigma^b \cdot W^{b,\nu}_{\rho} \sigma^c \cdot W^{c,\rho}_{\mu}) \\ \mathcal{O}_W &= i \frac{g}{2} (D_{\mu} \Phi)^{\dagger} \sigma^a \cdot W^{a,\mu\nu} (D_{\nu} \Phi) \\ \mathcal{O}_B &= i \frac{g'}{2} (D_{\mu} \Phi)^{\dagger} B^{\mu\nu} (D_{\nu} \Phi) \\ \mathcal{O}_{WW} &= -\frac{g^2}{4} \Phi^{\dagger} \sigma^a \cdot W^{a,\mu\nu} \sigma^b \cdot W^{b}_{\mu\nu} \Phi \\ \mathcal{O}_{BB} &= -\frac{g'^2}{4} \Phi^{\dagger} B^{\mu\nu} B_{\mu\nu} \Phi \\ \mathcal{O}_{\Phi,2} &= \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi). \end{split}$$

Neglect

$$\mathcal{O}_{\Phi,3} = \frac{1}{3} (\Phi^{\dagger} \Phi)^3 \qquad \mathcal{O}_{\Phi,4} = (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi)$$

Two point functions

- S,T and U parameters defined in terms of selfenergies are gauge dependent
- Need pinch part of the vertex corrections

• The gauge dependence of the gauge boson selfenergies is exactly canceled by the pinch part of the vertex corrections.

Two point functions

$$\begin{split} \bar{\Pi}_{WW}(q^2) &= \Pi_{WW}(q^2) + 2(q^2 - m_W^2)\Delta\Gamma_L^W(q^2) \\ \bar{\Pi}_{ZZ}(q^2) &= \Pi_{ZZ}(q^2) + 2c(q^2 - m_Z^2)\Delta\Gamma_L^Z(q^2) \\ \bar{\Pi}_{\gamma Z}(q^2) &= \Pi_{\gamma Z}(q^2) + sq^2\Delta\Gamma_L^Z(q^2) + c(q^2 - m_Z^2)\Delta\Gamma_L^\gamma(q^2) \\ \bar{\Pi}_{\gamma \gamma}(p^2) &= \Pi_{\gamma \gamma}(p^2) + 2sq^2\Delta\Gamma_L^\gamma(q^2), \\ \end{split}$$
where $c \equiv \cos \theta_W$ and $s \equiv \sin \theta_W$.

$$\begin{split} \alpha \Delta S &= \left(\frac{4s^2c^2}{m_Z^2}\right) \bigg\{ \overline{\Pi}_{ZZ}(m_Z^2) - \overline{\Pi}_{ZZ}(0) - \overline{\Pi}_{\gamma\gamma}(m_Z^2) \\ &\quad -\frac{c^2 - s^2}{cs} \bigg(\overline{\Pi}_{\gamma Z}(m_Z^2) \bigg) \bigg\} \\ \alpha \Delta T &= \left(\frac{\overline{\Pi}_{WW}(0)}{m_W^2} - \frac{\overline{\Pi}_{ZZ}(0)}{m_Z^2}\right) \\ \alpha \Delta U &= 4s^2 \bigg\{ \frac{\overline{\Pi}_{WW}(m_W^2) - \overline{\Pi}_{WW}(0)}{m_W^2} - c^2 \bigg(\frac{\overline{\Pi}_{ZZ}(m_Z^2) - \overline{\Pi}_{ZZ}(0)}{m_Z^2} \bigg) \\ &\quad -2sc \bigg(\frac{\overline{\Pi}_{\gamma Z}(m_Z^2)}{m_Z^2} \bigg) - s^2 \frac{\overline{\Pi}_{\gamma\gamma}(m_Z^2)}{m_Z^2} \bigg\}. \end{split}$$

$$\begin{split} \Delta S &= C_{S} \frac{1}{\epsilon} \left(\frac{4\pi\mu^{2}}{m_{Z}^{2}} \right)^{\epsilon} \Gamma(1+\epsilon) + R_{S} \\ \Delta T &= C_{T} \frac{1}{\epsilon} \left(\frac{4\pi\mu^{2}}{m_{Z}^{2}} \right)^{\epsilon} \Gamma(1+\epsilon) + R_{T} \\ \Delta U &= C_{U} \frac{1}{\epsilon} \left(\frac{4\pi\mu^{2}}{m_{Z}^{2}} \right)^{\epsilon} \Gamma(1+\epsilon) + R_{U} , \end{split}$$

$$C_{S} &= \frac{m_{H}^{2}}{8\pi} \left\{ \frac{f_{B} + f_{W}}{\Lambda^{2}} \right\} + \frac{m_{Z}^{2}}{24\pi\Lambda^{2}} \left\{ f_{B}(20c^{2} + 7) - 3f_{W} \\ + 24(s^{2}f_{BB} + c^{2}f_{WW}) + 36c^{2}g^{2}f_{WWW} + \frac{8c^{2}}{g^{2}}f_{\Phi,2} \right\}$$

$$R_{T} &= \{-4.0f_{\Phi,1} - (10^{-3})(.13f_{B} + 0.12f_{W} - 3.97f_{\Phi,2})\} \\ C_{T} &= \frac{1}{16\pic^{2}} \left\{ 9m_{W}^{2} \left(\frac{f_{B} + f_{W}}{\Lambda^{2}} \right) + 3m_{H}^{2} \frac{f_{B}}{\Lambda^{2}} - 12\frac{m_{W}^{2}}{g^{2}} \frac{f_{\Phi,2}}{\Lambda^{2}} \right\}$$

$$R_{U} &= \{0.20f_{DW} + (10^{-3})(-0.02f_{B} + 2.06f_{W} + 0.14f_{WW} \\ + 2.1f_{WWW} - 0.25f_{\Phi,2})\} \left(\frac{1 \text{ TeV}}{\Lambda} \right)^{2} . \tag{19}$$

Renormalization

- \overline{MS} scheme
- In R_{ξ} Gauge
- The divergences have been eliminated by the renormalization of the tree level couplings.

$$egin{aligned} f_{BW}(\mu) &= f_{BW} - rac{1}{\epsilon} (4\pi)^{\epsilon} \Gamma(1+\epsilon) C_S \ f_{DW}(\mu) &= f_{DW} - rac{1}{\epsilon} (4\pi)^{\epsilon} \Gamma(1+\epsilon) C_U \ f_{\Phi,1}(\mu) &= f_{\Phi,1} - rac{1}{\epsilon} (4\pi)^{\epsilon} \Gamma(1+\epsilon) C_T. \end{aligned}$$

• The only remaining contributions to the oblique corrections are the finite contributions at $\mu = m_z$.

$$\Delta S = R_S \qquad \Delta T = R_T \qquad \Delta U = R_U.$$

- Limits from the oblique parameters.
- Coefficients of the operators that contribute at tree level are significantly restricted (all other coefficients are set to zero.)

From outer to inner are 99%, 95% and 68% CL

 $\mu = m_Z$

• Limits from the oblique parameters on f_{WW} and f_{BB} (other coefficients are set to zero.)

• Limits from the oblique parameters on f_{WW} and f_W (other coefficients are set to zero.)

Leading logarithmic result $\mu = \Lambda$

Renormalized result at $\mu = m_z$

Oblique parameters v.s. H-> WW

• Complementary bounds from oblique parameters and Higgs data.

 $\mu_{WW} \sim 1 + [.0086f_{WW}(m_Z) + .017f_W(m_Z) - .03f_{\Phi,1}(m_Z) - .06f_{\Phi,2}(m_Z)] \left(\frac{1 \text{ TeV}}{\Lambda}\right)^2 + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$

oblique parameter

 $\mu_{WW} = .68 \pm .20$ (CMS) $\mu_{WW} = .99 \pm .30$ (ATLAS)

 $\mu = m_z$

Oblique parameters v.s. H-> 2 photons

• Comparison of limits from the oblique parameters and H-> 2 photons on $f_{WW} + f_{BB}$ and $f_{WW} - f_{BB}$ (other coefficients are set to zero.)

$$\mu_{\gamma\gamma} \equiv \frac{\Gamma(H \to \gamma\gamma)}{\Gamma(H \to \gamma\gamma)|_{SM}} \sim 1 + 1.47 \left(\frac{1 \text{ TeV}}{\Lambda}\right)^2 [f_{BB}(m_Z) + f_{WW}(m_Z) - f_{BW}(m_Z)] + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$

oblique parameter
$$\mu_{\gamma\gamma} = .77 \pm .27 \quad (CMS)$$

$$\mu_{\gamma\gamma} = 1.55 \pm .31 \quad (ATLAS).$$

$$\mu = m_Z$$

Higgs data
$$\frac{f_{WW} + f_{BB}}{\Lambda^2} (\text{TeV}^{-2})$$

 Limits from oblique parameters, which influence the decay H-> Z photon.

$$egin{aligned} \mu_{Z\gamma} &\equiv rac{\Gamma(H o Z\gamma)}{\Gamma(H o Z\gamma)\mid_{SM}} \ &= 1 + rac{2A_{real}}{A_{real}^2 + A_{imag}^2} rac{2\pi sc}{lpha} rac{m_Z^2}{\Lambda^2} g_1 + \mathcal{O}igg(rac{1}{\Lambda^4}igg) \ &g_1 = f_B(m_Z) - f_W(m_Z) + 4s^2 f_{BB}(m_Z) \ &- 4c^2 f_{WW}(m_Z) + 2(c^2 - s^2) f_{BW}(m_Z) \end{aligned}$$

• Neglect all coefficients except $f_W(m_Z)$ and $f_B(m_Z)$. -80 < $[f_B(m_Z) - f_W(m_Z)] \left(\frac{1 \text{ TeV}}{\Lambda}\right)^2 < 35$,

Conclusions

- Only weak limits on the couplings that contribute at one loop can be obtained from the oblique parameters.
- In contrast, the couplings that contribute at tree level, are tightly constrained.
- Loop contributions to oblique parameters yield complementary information to direct H->WW measurement.

Backup slides

Example

• Anomalous contributions to Π_{WW}

• Anomalous contributions to the W u d vertex $\Delta \Gamma_L^{Wud}$

- $\Delta\Gamma_L^{Vff}(q^2) = gT_3^f \Delta\Gamma_L^V(q^2) \quad V = Z, \gamma$ $\Delta\Gamma_L^{Wff'}(q^2) = rac{g}{\sqrt{2}} \Delta\Gamma_L^W(q^2).$
- χ^{\pm} and χ^3 : Goldstone bosons c^{\pm} and c_Z : Faddeev-Popov ghosts.

Effective field theory

• Assume new physics is at a scale (Λ) much higher than that we can probe experimentally.

$$\mathcal{L}_{eff} = \sum_{n=5}^{\infty} \frac{f_n}{\Lambda^{n-4}} \mathcal{O}_n + \dots$$

• e.g. Fermi's four fermion interaction

