Searches for Signatures of R-Parity Violating Models with the CMS Detector

Halil Saka (Princeton University) SUSY2014, July 21 – Manchester, UK

R-Parity Violating SUSY

- R-parity:
 - A multiplicative quantum number
 - Standard model (SM) particles: $R_p = +1$
 - SUSY partners: $R_p = -1$
- R-parity conservation (RPC):
 - Lightest SUSY particle (LSP) becomes stable.
 - Proton lifetime is protected.
- The SUSY Lagrangian can be expanded with the RPV terms $^{\dagger}\colon$

$$W_{\rm RPV} = \frac{1}{2} \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \frac{1}{2} \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k$$

– Any one of the λ s doesn't facilitate proton decay by itself.

- General approach is:
 - An underlying RPC SUSY scenario is responsible for the production.
 - Focus on a given $\lambda > 0$ at a time.
 - λs are large enough to cause prompt decays.

† R. Barbier et al., "R-Parity-violating supersymmetry", Phys. Rept. 420 (2005) 1.

CMS Searches

• At CMS, RPV(-like) signatures are searched for in two categories:

	Benchmark Model (pair-production)	Final State	CMS PAS
	${ ilde g} ightarrow uds/udb/csb$	$\geq 6j$	EXO-12-049
SUSV	$\tilde{g} \rightarrow tbs$	$\ell + \ge 6j$	SUS-12-015
ובטכ. לייייים אמם מאו	$\tilde{b} \rightarrow ts/td$	$\geq 2\ell + \geq 2b + \geq 2j_{\mathcal{K}}$	B2G-12-008
LSI KI V Decay	${ ilde t} o t \mu t b / t au \mu u / t \mu e u$	$\geq 3\ell + \geq 1b$	SUS-13-003
	${\tilde q} ightarrow q \ell \ell \nu \; / \; {\tilde g} ightarrow q {\bar q} \ell \ell \nu$	4ℓ	SUS-13-010
	$LQ_1 \rightarrow eq/\nu q$	$eejj, e\nu jj$	EXO-12-041*
Leptoquarks: mBRW model	$LQ_2 \rightarrow \mu q/\nu q$	$\mu\mu jj,\ \mu u jj$	EXO-12-042
	$\mathrm{LQ}_3 ightarrow \tau b$ / $\tilde{t} ightarrow q \bar{q} \tau b$	$\ell \tau_{had} + \ge 2j$	EXO-12-032
	$LQ_3 \rightarrow \tau t$	$\mu \tau_{had} + \ge 2j$	EXO-13-010*

All analyses presented here use the full $\sqrt{s} = 8$ TeV CMS dataset.

*NEW

† A combined "RPV SUSY Searches at the CMS" paper will be available soon.

- Final states are characterized by an abundance of leptons and jets.
- All CMS results presented here are publicly available at:
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS (Supersymmetry)
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO (Exotica)
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G (Beyond-two-generations)

EXO-12-049: $\tilde{g} \rightarrow uds/udb/csb$

- $\tilde{g} \to q \tilde{q} \to q q q$ via $\lambda_{112,113,223}^{\prime\prime}$ RPV couplings.
- An all-hadronic search, where a 3-jet invariant mass peak is sought after over QCD and $t\bar{t}+jets$ backgrounds.
- 3 signal regions are defined with at least 6 jets:

Selection	Inclusive	Heavy-flavour search	
criteria	search	low mass	high mass
Mass range	400-1500 GeV	200-600 GeV	600-1500 GeV
Δ	110 GeV	110 GeV	110 GeV
Min. fourth-jet p_T	110 GeV	80 GeV	110 GeV
Min. sixth-jet p_T	110 GeV	60 GeV	110 GeV
Min. sphericity	0.4	_	0.4

EXO-12-049: $\tilde{g} \rightarrow u ds/u db/c sb$

- Decays into light-flavor jets are excluded at 95% CL for $M_{\tilde{q}} < 650$ GeV
- Decays into heavy-flavor containing jets are excluded at 95% CL for $200 < M_{\tilde{o}} < 835$ GeV.

 $5 \times BR(X \rightarrow jjj)$ [pb]

10

10⁻²

SUS-12-015: $\tilde{g} \rightarrow tbs$

- Dominant backgrounds are $t\bar{t}$ +jets, and $t\bar{t}Z/W$ for high b-jet multiplicities.
- B-tagging/mistagging scale factors and MC b-tag multiplicity modeling are verified in signal depleted regions (N_{jet} < 6).

SUS-12-015: $\tilde{g} \rightarrow tbs$

• B-tag multiplicity distributions are used to discriminate signal vs. background.

CMS preliminary, L = 19.3 fb⁻¹, fs=8 TeV; pp → ĝĝ, ĝ → tbs, m(ĝ)>>m(ĝ

Observed Limit

cpected ± 1σ LO+NLL õõ production cross

Median Expected Limit

Cross section theoretical uncertainty

• 95% CL exclusion for $M_{\tilde{g}} < 1036$ GeV, $\beta(\tilde{g} \rightarrow tbs) = 1.$

600

400

 $\sigma \times BR (pb)$

10

10

10-2

800

1000

7/23

B2G-12-008: $\tilde{b} \rightarrow ts/td$

- Analysis requires fully leptonic decays of top quarks: $\geq 2\ell + \geq 2b + \geq 2jk.$
- Sensitive to decays via RPV couplings λ_{332}'' and λ_{331}'' .
- Dominant background is fully leptonic $\ensuremath{t\bar{t}}\xspace+\ensuremath{jets}\xspace$ process.
- 3 signal (and 1 control) regions are defined using the p_T of the second leading light-jet:

B2G-12-008: $\tilde{b} \rightarrow ts/td$

- Search is conducted over the 3D distribution of $p_{T}^{1}(j_{\mathcal{B}})$, $p_{T}^{2}(j_{\mathcal{B}})$ and $M(t_{reco}, j_{\mathcal{B}})$.
 - Forms of background fit functions are guided by MC.
 - Signal shapes are extracted using MC entirely.
- 95% CL exclusion for $M_{\tilde{b}} <$ 307 GeV, $\beta(\tilde{b} \rightarrow tj) = 1.$

GeV

25.7

Events /

Ratic

180

CMS Preliminary $\int \mathcal{L} = 19.5 \text{ fb}^{-1} \sqrt{s} = 8 \text{ TeV}$

400 600 800 1000 1200 M_{Liet} (GeV)

 χ^2 /dof = 54.25/36

Fitted

function

Data

CMS Preliminary $\int \mathcal{L} = 19.5 \text{ fb}^{-1}$

 γ^2 /dof = 24.65/36

Data

Fitted

function

M, int (GeV)

GeV

Events / (25.7

200 400 600 800

SUS-13-003: $\tilde{t} \rightarrow t\mu tb/t\tau\mu\nu/t\mu e\nu$

- $\tilde{t} \to t \tilde{\chi}^{0*} \to t \ell^{\pm} \tilde{\ell}^{\mp} \to t \ell^{\pm} \ell^{\mp} \nu$ (tb)
- 4 signal regions:
 - 3(4) ℓ including 0(1) τ_{had} + $\geq 1b$
 - Veto opposite-sign same-flavor (OSSF) pairs compatible with M_Z .

paus	compe	ittiste w	ιι	1112	•				
Each	signal	reaion	is	split	to	5	Sт	bins.	

- Dominant prompt lepton background contributions are estimated using MC: WZ, ZZ ttZ, ttW.
- Misidentified lepton contributions are estimated via data-driven methods (except $t\bar{t}$): $- jet \rightarrow e/\mu/\tau_{had}$ (fake-rate method), $\gamma^* \rightarrow e/\mu$ (asymmetric conversions)

electron	$p_{\rm T} > 20(10)^{\dagger} {\rm ~GeV}$	$ \eta < 2.4$
muon	$p_{\rm T} > 20(10)^{\dagger} {\rm ~GeV}$	$ \eta < 2.4$
tau	$p_{\rm T} > 20 {\rm ~GeV}$	$ \eta < 2.3$
jet	$p_{\rm T} > 30 { m ~GeV}$	$ \eta < 2.5$
	† suble	ading lepton

SUS-13-003: $\tilde{t} \rightarrow t\mu tb/t \tau \mu \nu/t \mu e \nu$

• 95% CL exclusion for: $-M_{\tilde{t}} < 1100$ GeV, $\lambda_{122} > 0$ $-M_{\tilde{t}} < 900$ GeV, $\lambda_{233} > 0$

() 1200 في سيخ 1000

800

600

400

200

- Results in the $\lambda'_{233} > 0$ scenario depend on the \tilde{t} vs. $\tilde{\chi}^0$ mass hierarchy.
 - If $M_{\tilde{t}} \sim M_t + M_{\tilde{v}^0}$, soft leptons

CMS Preliminary

Halil Saka RPV Searches with the CMS Detector vs = 8 TeV, L ____ = 19.5 fb

SUS-13-010: $\tilde{q} \rightarrow q\ell\ell\nu \ / \ \tilde{g} \rightarrow q\bar{q}\ell\ell\nu$

•
$$\tilde{q}(\tilde{g}) \to q(q\bar{q})\tilde{\chi}^0 \to q(q\bar{q})\ell^{\pm}\tilde{\ell}^{\mp} \to q(q\bar{q})\ell^{\pm}\ell^{\mp}\iota$$

• Exactly 4-lepton requirement (e/μ) with an OSSF pair.

electron	$p_{\rm T} > 20(10)^{\dagger}$	GeV	$ \eta < 2.4$
muon	$p_{\rm T} > 20(10)^{\dagger}$	GeV	$ \eta < 2.4$
		† suble	ading lepton

• 9 signal regions:

– M_1 : mass of the OSSF pair closest to the Z mass.

- M_2 : mass of the remaining pair.
- Backgrounds are:
 - ≥ 4 -prompt (ZZ,ttZ,ttWW) MC
 - 3-prompt (WZ,ttW) Fake-rate Method
 - 2-prompt (DY) Fake-rate Method
- Sensitive to the following RPV couplings:
 - Esp. λ_{121} , λ_{122}
 - Also λ_{131} , λ_{132} , λ_{231} , and λ_{232} .

	$M_1 < 75 \; GeV$	$75 < M_1 < 105 \; GeV$	$M_1 > 105 \; GeV$
ZZ	0.76 ± 0.18	15 ± 4	0.30±0.07
rare	0.28 ± 0.13	2.7±1.0	0.12 ± 0.05
fakes	$0.4{\pm}0.4$	0.7±0.7	0.05 ± 0.05
all backgrounds	$1.4{\pm}0.5$	18 ± 4	0.47 ± 0.10
observed	0	20	0
ZZ	$0.10 {\pm} 0.03$	150*	0.05 ± 0.01
rare	0.12 ± 0.05	2.5 ± 1.2	0.06±0.03
fakes	0.3±0.3	$0.6 {\pm} 0.6$	0.05 ± 0.05
all backgrounds	0.52 ± 0.34	153*	0.16 ± 0.06
observed	0	160	0
ZZ	9.8±2.0	32±8	0.98±0.20
rare	0.31 ± 0.14	2.5±1.2	0.011 ± 0.005
fakes	0.3±0.3	0.8 ± 0.8	0.06±0.06
all backgrounds	$10.4{\pm}2.0$	35±8	1.0 ± 0.2
observed	14	30	1

SUS-13-010: $\tilde{q} \rightarrow q\ell\ell\nu \ / \ \tilde{g} \rightarrow q\bar{q}\ell\ell\nu$

- ϵ (T1) ~ ϵ (T2) : Hence, only T2 interpretations are presented.
- Results can be interpreted in a variety of pMSSM models (4-lepton efficiencies are provided).
- 95% CL exclusion for $M_{\tilde{g}} < 1.4$ TeV, assuming $\lambda_{121} > 0$ or $\lambda_{122} > 0$, and $M_{\tilde{\chi}^0} > 400$ GeV.

^{13/23}

Leptoquarks

- LQs are bosons, carry both baryon and lepton number, and have fractional electric charge.
- Phenomenology is described by the effective mBRW[†] model:
 - Expand the SM to allow all terms respecting the gauge invariance.
 - Group LQs into 3 generations (one for each fermion family).
 - Require chiral couplings, and only to a given generation of SM fermions.
 - Pair-production cross-section at the LHC is calculable $(gg \rightarrow LQ\overline{LQ}, q\bar{q} \rightarrow LQ\overline{LQ})$.
- Unknown parameters are:
 - M_{LQ} and spin (CMS 8 TeV searches are for <u>scalar</u> leptoquarks).
 - lepton-quark-leptoquark Yukawa couplings, λ .
 - Branching fraction, β , for $LQ \rightarrow \ell q$. The complementary $LQ \rightarrow \nu q'$ channel is given as $1 - \beta$.
- $LQs \leftrightarrow \text{RPV}$ LSPs with $\lambda'_{ijk} > 0$:
 - Final states may slightly differ due to lower jet & lepton multiplicites.

[†] W. Buchmuller, R. Ruckl, and D. Wyler, "Leptoquarks in lepton-quark collisions", Phys. Lett. B 191 (1987).

EXO-12-041: $LQ_1 \rightarrow eq/\nu q$

- Selection optimization for each *M*_{LQ} hypothesis: $-\beta = 1$ [eejj]: $S_{\mathrm{T}}, M_{min}(e, j), M(e, e)$ $-\beta = 0.5 [e\nu jj] : S_{\rm T}, M(e, j), E_{\rm T}^{miss}, M_{\rm T}(e, \nu)$
- A broad excess is observed: Excess is background-like in eejj channel. – $M_{LQ} = 650$ GeV, $\beta < 0.15$ can't be excluded.
- 95% CL exclusion for $M_{LQ} < 1005(845)$ GeV, $\beta = 1(0.5).$

Halil Saka RPV Searches with the CMS Detector

Data, 19.6 fb LQ, M = 650 GeV. B

> Other backgrounds QCD multijets

W + jets

τī %

 $\sqrt{s} = 8 \text{ TeV}$

EXO-12-042: $LQ_2 \rightarrow \mu q/\nu q$

• 2 search regions: $-\beta = 1 \quad [\mu\mu jj] : \ge \mu\mu + \ge 2j$ $-\beta = 0.5 \quad [\mu\nu jj] : \mu + \ge 2j + E_{T}^{miss} > 55 \text{ GeV}$

muon	$p_{\rm T} > 45 { m ~GeV}$	$ \eta < 2.1$
jet	$p_{\rm T} > 125(45)^{\dagger}$ C	GeV $ \eta < 2.4$
$electron^*$	$p_{\rm T} > 45 { m ~GeV}$	$ \eta < 2.1$
* elect	from veto for $\beta = 0.5$	† subleading jets

- $\beta = 1$ results are also applicable to pair-produced stop decays via RPV λ'_{232} .
- Dominant backgrounds:

EXO-12-042: $LQ_2 \rightarrow \mu q/\nu q$

- Selection optimization for each M_{LQ} hypothesis: $-\beta = 1 \ [\mu\mu jj]: S_{\rm T}, M_{\rm min}(\mu, j), M(\mu, \mu)$ $-\beta = 0.5 [\mu \nu j j]$: $S_{\rm T}, M(\mu, j), M_{\rm T}(\mu, \nu)$
- 95% CL exclusion for $M_{LQ} < 1070(785)$ GeV, $\beta = 1(0.5).$

19.6 fb⁻¹

s = 8 TeV

 $\sigma_{\text{these}} \times \beta^2$ with unc., (β =1) Expected 95% CL upper limit

Observed 95% CL upper limit

ATLAS exclusion (1.03 fb⁻¹, 7 Te

CMS exclusion (19.6 fb⁻¹, 8 TeV)

CMS exclusion (5.0 fb⁻¹, 7TeV)

A CONTRACTOR OF TAXABLE $I \cap \overline{LQ} \rightarrow \mu\mu\mu$

300 400 500 600 700 800 900 1000 1100 1200

M_{LO} (GeV)

CMS Preliminary

10

σ×β² (pb)

10⁻²

10.4

10

Halil Saka RPV Searches with the CMS Detector

CMS Preliminary

10

10'1

10⁻²

10

s×2β(1-β) (pb)

s = 8 TeV

 $LQ \overline{LQ} \rightarrow \mu \nu j$

M_{LO} (GeV)

EXO-12-032: $LQ_3 \rightarrow \tau b \ / \ \tilde{t} \rightarrow q\bar{q}\tau b$

• $LQ_3 \rightarrow \tau b$ search: $- \frac{e\tau_{had}}{\mu \tau_{had}} + \frac{2j}{2j}$ (with ≥ 1 b-tag) $- M(\tau_{had}, j) > 250$ GeV

tau	$p_{\rm T} > 50 { m ~GeV}$	$ \eta < 2.3$
muon	$p_{\rm T} > 30 { m ~GeV}$	$ \eta < 2.1$
electron	$p_{\rm T} > 30~{\rm GeV}$	$ \eta < 2.1$
jet	$p_{\rm T} > 30 { m ~GeV}$	$ \eta < 2.4$

- $\tilde{t} \to q\bar{q}\tau b$ search: $(\tilde{t} \to \tilde{\chi}^+ b \to \tilde{\nu}\tau^+ b \to q\bar{q}\tau^+ b$ via λ'_{3jk} for j, k < 3) - $e\tau_{had}/\mu\tau_{had} + \geq 5j$ (with ≥ 1 b-tag)
- $LQ_3 \rightarrow \tau b$ results are also applicable to pair-produced stop decays via RPV λ'_{333} .
- Dominant Backgrounds:

Irreducible $t\bar{t}$ +jets	Data-driven " $e\mu$ " method	($S_{ m T}$ shape from MC)
Fake $ au_{had}$	Data-driven fake-rate method	($S_{ m T}$ shape from MC)
QCD (for $e au_{had}$ channel)	Data-driven "SS OS" method	
Other prompt-prompt	MC	

• S_T distribution is used to discriminate signal vs. background.

EXO-12-032: $LQ_3 \rightarrow \tau b \ / \ \tilde{t} \rightarrow q\bar{q}\tau b$

EXO-13-010: $LQ_3 \rightarrow \tau t$

- 2 categories:
 - Cat. A: Same-sign $\mu \tau_{had} + \geq 2j$ Split into 2 channels of average leptonic $|\eta|$: $|\tilde{\eta}| < 0.9$ (central), $|\tilde{\eta}| \geq 0.9$ (forward) Tau $p_{\rm T}$, $S_{\rm T}$ cuts are optimized for each M_{LQ} hypothesis.
 - **Cat. B**: $\mu \tau_{had} + \geq 3j + E_{T}^{miss} > 50 \text{ GeV}$ **Cat. B** uses a looser tau ID, and Cat. A is vetoed. Split into 4 tau p_{T} bins. S_{T} , jet_{1,2,3} p_{T} cuts are optimized for the best expected limit.

tau	$p_{\rm T} > 20 {\rm ~GeV}$	$ \eta < 2.1$
muon	$p_{\rm T} > 25(30)^{\dagger} {\rm ~GeV}$	$ \eta < 2.1$
electron	$p_{\rm T} > 15(30)^{\dagger} {\rm GeV}$	$ \eta < 2.5(2.1)^{\dagger}$
jet	$p_{\rm T} > 40(30)^{\dagger} {\rm ~GeV}$	$ \eta < 2.5$
		† Category B

 LO_3

π⁻ π^{-,0} π^{-,0,0}

- Results are also applicable to pair-produced sbottom decays via RPV λ'_{333} .
- Backgrounds:

Cat. A	Cat. B
Single/Double Fakes (Matrix Method)	$ au_{had}$ fakes (fake-rate corrected MC)
$t\bar{t}$ +jets, W+jets	$t\bar{t}$ +jets, W+jets, DY+jets
Prompt-prompt (MC)	$ au_{had}$ prompts (MC)
Diboson, $t\bar{t}W$, $t\bar{t}Z$, etc.	Diboson, tīW, tīZ, etc.

EXO-13-010: $LQ_3 \rightarrow \tau t$

Conclusions

- CMS efforts are varied, cover a variety of multi-lepton, multi-jet final states.
 - A systematic approach to all possible scenarios.
 - Limited subset of model interpretations are presented here today.

RPV SUSY			Leptoquarks			
Benchmark	Limit	Coupling	$\beta(LQ \to \ell q)$:	1	0.5	0
$\tilde{g} \rightarrow udb$	200-835	$\lambda_{113}^{\prime\prime}$	$LQ_1 \to eq$	1005	845	N/A
$\tilde{g} \rightarrow u ds$	650	$\lambda_{112}^{\prime\prime}$	$LQ_2 \rightarrow \mu q$	1070	785	N/A
$\tilde{g} \to tbs$	1036	$\lambda_{332}^{\prime\prime}$	$LQ_3 \rightarrow \tau b$	740	510*	660^{+}
$\tilde{g} ightarrow q \ell \ell \nu$	1400	$\lambda_{121,122}$	$LQ_3 \rightarrow \tau t$	634	495*	724 [‡]
$\tilde{b} \rightarrow ts/td$	307	$\lambda_{332,331}^{\prime\prime}$				
$\tilde{t} \to t \ell \ell \nu$	1100	λ_{122}	† Obtained by reinterpreting SUS-13-0			
$\tilde{t} \to t \ell \ell \nu$	900	λ_{233}	T Ubtained by reinterpreting SUS-13 * No statistical combination of β = All mass limits are in units of			3 = 1, 0. 3 = 1, 0. ts of GeV.

• No discoveries yet, but the journey continues to 13 TeV and beyond.

Backup

EXO-12-041: $LQ_1 \rightarrow eq/\nu q$

