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A Wish List for (Heterotic) String Pheno

Four-dimensional EFT with:

• N = 1 SUSY

• SM gauge interactions

• massless spectrum containing 3 chiral generations of quarks and leptons
and no extra fields charged under the SM gauge group; uncharged fields
(moduli) allowed for the moment

• massless spectrum containing Higgs doublets throughout the moduli space

• stable proton

• hierarchy of holomorphic Yukawa couplings consistent with a heavy top

• stable moduli; broken SUSY

• compute physical Yukawa couplings



A Heterotic Setup

In 10d, the heterotic string is specified by a metric and a non-abelian
gauge field. To compactify: (X ,V ).

Constraints:

ch2(V )− ch2(TX ) = [W ]
(Green-Schwarz anomaly cancellation)

Fij = Fīj = 0 (V holomorphic)

g i j̄Fi j̄ = 0 DUY theorem guarantees the HYM equation is
satisfied provided that V is polystable
and has slope zero.



A Heterotic Setup - continued

The simplest and best understood situation: X Calabi-Yau three-fold.

In this case, the possible bundles can be divided into two classes:

− V = TX
standard embedding: corresponds to (2, 2) worldsheet susy

− V 6= TX
general embeddings: correspond to (0, 2) worldsheet susy

In the following, I will refer to the E8 × E8 heterotic string.



The Heterotic Line Bundle Setup

Simplest choice for V (for, e.g. stability checks and cohomology
computations): sum of line bundles

V =

rk(V )⊕
a=1

La =

rk(V )⊕
a=1

O(~ka)

where ~ka = c1(La).

E6-models are obtained for rk(V ) = 3, SO(10)-models for rk(V ) = 4
and SU(5)-models for rk(V ) = 5.

The (intermediate) GUT group contains 2,3 and respectively 4 extra
U(1) symmetries. These are phono OK and can greatly constrain the
superpotential.



The Heterotic Line Bundle Setup – continued

Topological constraints on V :

• c1(V ) = 0

• c2(TX )− c2(V ) ≥ 0

• ind(V ) = −3

In addition, impose poly-stability and slope zero:

µ(La) =

∫
X

c1(La) ∧ J2 = dijk ~k
i
a t

j tk = 0

simultaneously for all a = 1, . . . , rk(V )

Result: intermediate GUT with a bunch of (effectively global)
U(1) symmetries, and 3 chiral families of matter.



Heterotic Line Bundle Models – continued

V = L1 ⊕ . . .⊕ L5

with c1(V ) = 0, s.t. the structure group is S(U(1)5) ⊂ SU(5) ⊂ E8

The result: Effective field theory: N = 1, 4-dimensional GUT with gauge
group SU(5)× S(U(1)5) and matter in 10, 10, 5, 5, 1

GUT −→ Standard Model. The required geometric data consists of:

− a freely-acting discrete symmetry Γ, such that X/Γ is non-simply
connected;

− an equivariant structure on V , such that V −→ X descends to a
bundle Ṽ −→ X/Γ

− complete the bundle Ṽ with a discrete Wilson line to Ṽ ⊕W in order
to break the GUT group

The result: Standard-like model with gauge group GSM × S(U(1)5)



The 4D Effective Field Theory

Gauge group: SU(5)× S(U(1)5). Extra U(1)s G-S anomalous in general.

Matter multiplets: 10a, 10a, 5a,b, 5a,b, 1a,b

multiplet S(U(1)5) charge bundle total number required

10a ea V
∑

a h
1(X , La) 3|Γ|

10a −ea V
∗ ∑

a h
1(X , L

∗
a ) 0

5a,b ea + eb ∧2V
∑

a<b h
1(X , La ⊗ Lb) 3|Γ|+ nH

5a,b −ea − eb ∧2V
∗ ∑

a<b h
1(X , L

∗
a ⊗ L

∗
b ) nH

1a,b ea − eb V ⊗ V
∗ ∑

a,b h
1(X , La ⊗ L

∗
b ) nH

1a,b: singlets under SU(5) (GSM after quotienting); bundle moduli

〈1a,b〉 = 0: line bundle sum; 〈1a,b〉 6= 0: non-Abelian bundle

Also: explore the moduli space of non-Abelian bundles by explicitly
constructing bundles which split into a sum of line bundles



The 4D Effective Field Theory - continued

The U(1) symmetries constrain the superpotential

W = µHH̄ + Y (d)
pq H 5̄p10q + Y (u)

pq H̄ 10p10q+

+ ρp H̄Lp + λpqr 5̄
q5̄q10r+

+ λ′pqrs 5̄
p10q10r10s + . . .

Example: µ = µ0 + µ1,α1αa,b + µ2,α,β1αa,b1
β
c,d + . . .+ µnp

µ0 = 0 by construction; µ1 = 0 due to the U(1)s



A Comprehensive Scan

The manifolds: complete intersection CY threefolds (CICYs) – common
zero locus of homogeneous polynomials in products of projective spaces
(Candelas, Green, Hübsch, Lütken)

Select those that are known to admit a freely-acting discrete symm
(Braun) and are favourable: 68 CICYs with h1,1(X ) < 7.

The bundles: Line bundles are classified by their first Chern class:

c1(L) = k iJi

with 1 ≤ i ≤ h1,1(X ) and k i ∈ Z. Describe a rank 5 line bundle sum

V =
5⊕

a=1

La =
5⊕

a=1

O(~ka), where ~ka = (k1
a , . . . , k

h1,1(X )
a )

by 5× h1,1(X ) integers. For −kmax ≤ k i
a ≤ kmax, one has many choices:

(2kmax + 1)h
1,1(X )



A Comprehensive Scan – Results

We have scanned over ∼ 1040 bundles. This was possible only to the fact
that many constraints (e.g.: from stability, index constraints from the
spectrum) can be imposed along the way, before even constructing the
whole line bundle sum.

Imposing the constraints for a consistent susy string vacuum and the index
constraints that lead to a correct chiral asymmetry we found:

h1,1(X ) 1 2 3 4 5 6 All

No. models 0 0 6 552 21731 41036 63325

In addition, requiring the absence of 10-multiplets and the presence of at
least one H − H pair, led to:

34, 989 models

Roughly, the number of models per CY increases by one order of
magnitude for each additional Kähler parameter.
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A Theoretical Bound

∑
a

kTa G̃ ka ≤ |c2i (TX )|

G̃ = κG/(6|t|)

Gij =
1

2 Vol(X )

∫
X

Ji ∧ ?Jj = −3

(
κik
κ
− 2κiκj

3κ2

)

where Vol(X ) = κ/6 is the Calabi-Yau volume with respect to the
Ricci-flat metric, κ = dijk t

i t j tk , κi = dijk t
j tk and κij = dijk t

k .

∑
a

|ka|2 ≤
num factor

λmin

To derive this, we used the slope-zero conditions and the bound on c2(V )
from the anomaly cancellation. The bound is not sensitive to the number
of line bundles involved in the sum, nor to the index of V . [Buchbinder,
AC, Lukas]



Position in the Kähler Moduli Space

The constraints imposed by poly-stability µ(L1) = 0 define a certain locus
in the Kähler moduli space. The slope zero equations are homogeneous in
the t i . Thus t i → λt i leaves this locus invariant.

There is a physically allowed region in the Kähler moduli space:

Supergravity limit: t i > 1

finiteness of low-energy coupling constants: Vol(X ) . Vmax.

Vol(X ) =
1

6
dijk t

i t j tk





Conclusions and Outlook

• Interesting phenomenology can be achieved with line bundle models.
These also provide an accessible window in the larger moduli space of
non-Abelian bundles. U(1) symmetries constrain the Lagrangian.

• The scan exhausted the class of line bundle models with an underlying
SU(5) GUT: 35, 000 models. We expect a much larger number of SMs.

• Much work remains to be done. Technical difficulties related to
computing line bundle cohomology and enumerating all possible
equivariant structures for a given (X ,V , Γ).

• Why is the number of poly-stable bundles with c1(V ) = 0, c2(V )
constrained by the anomaly cancellation condition and c3(V ) fixed by the
number of families, finite? Can this be related to some type of
Donaldson-Thomas invariants?



Thank you!


