

Electroweak penguin decays to leptons at LHCb

SUSY 2014, Manchester

Christian Linn, CERN

on behalf of the LHCb Collaboration

Forward spectrometer with acceptance optimized for b-hadrons: 2 < η < 5

decay time resolution ~ 45 fs -> good separation of B vertices excellent K - π separation

- (~ 95 % for ~ 5 % $\pi \rightarrow$ K mis-id probability)
- -> helps to suppress peaking background

+ very efficient trigger for di-muon channels $\epsilon \approx 90~\%$

LHCP EW penguin decays

FCNC as b -> sll transitions in the SM only possible via loop and box diagrams -> highly suppressed / new particles can enter the loop and modify observables

b -> sll decays can theoretically be described by effective hamiltonian:

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i (C_i \mathcal{O}_i + C_i' \mathcal{O}_i')$$

 Operators O_i depend on hadronic form factors (FF) of the decay (FF usually dominate theoretical uncertainties)

Wilson coefficients C_i describe short distance effects – sensitive to NP contributions
 -> observables like branching fraction, CP asymmetries, angular distributions depend on C_i

Angular analysis of B⁰ -> K^{*} μμ (1fb⁻¹) JHEP 08 (2013) 131, Phys. Rev. Lett. 111 (2013) 191801

> and B⁺ -> K⁺ $\mu\mu$, B⁰ -> K_s⁰ $\mu\mu$ (3fb⁻¹) arXiv:1403.8045v2

CP asymmetry of B⁰ -> K^{*} μμ, B⁺ -> K⁺ μμ (3fb⁻¹) LHCb-PAPER-2014-032, PRELIMINARY

- > Branching fractions and isospin asymmetry of B -> K $\mu\mu$ (3fb⁻¹) arXiv:1403.8044v3
- Ratio of branching fractions B⁺ -> K⁺ µµ and B⁺ -> K⁺ ee (3fb⁻¹) arXiv:1406.6482v1
- Branching fractions of B⁺ -> hhh µµ (3fb⁻¹) LHCb-PAPER-2014-030, PRELIMINARY

LHCb Angular analysis of $B^0 o K^* \mu^+ \mu^-$ LHCb-PAPER-2013-019 JHEP 08 (2013) 131

Zero-crossing point of A_{FB} in SM largely free from form-factor uncertainties: $q_0^2 = 4.9 \pm 0.9 \text{ GeV}^2/c^4$ -> consistent with SM predictions (3.9 – 4.4 GeV²/c⁴)

 a^{2} [GeV²/ c^{4}]

 $a^2 \,[{\rm GeV}^2/c^4]$

FF independent observables

LHCb-PAPER-2013-037 Phys. Rev. Lett. 111 (2013) 191801

Form-factor independent observables: $P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_{\rm L}(1-F_{\rm L})}}$

Observables extracted separately from different fits to dataset:

> In general good agreement with SM expectation, discrepancy for $P_5^{'}$ in 3rd q² bin

> P-value for observed deviation is 0.02% (3.7σ)

possible reasons: smaller Wilson coefficient C₉ with respect to SM

 A_{FB} : forward backward asymmetry of di-muon system -> zero in SM F_{H} : fractional contribution of (pseudo)scalar + tensor amplitudes -> small in SM

LHCD Angular analysis of $B \to K \mu^+ \mu^-$

LHCb-PAPER-2014-007 arXiv:1403.8045v2

Parameters extracted from 2d fit (mass – angle)

 \succ in bins of q²

-> most precise to date + consistent with SM

LHCb-PAPER-2014-032 PRELIMINARY

CP asymmetries of B⁺ -> K⁺ $\mu\mu$ and B⁰ -> K^{*} $\mu\mu$

$$\mathcal{A}_{\rm CP} = \frac{\Gamma(\bar{B} \to \bar{K}^{(*)}\mu^+\mu^-) - \Gamma(B \to K^{(*)}\mu^+\mu^-)}{\Gamma(\bar{B} \to \bar{K}^{(*)}\mu^+\mu^-) + \Gamma(B \to K^{(*)}\mu^+\mu^-)}$$

➤ SM prediction is O(10⁻³), JHEP 01 (2009) 019

CP asymmetries of $B \to K \mu^+ \mu^-$

LHCb-PAPER-2014-032 PRELIMINARY

Yields give raw asymmetry A_{RAW} -> contaminated by production and detection asymmetries

$$\mathcal{A}_{\rm CP}(B \to K^{(*)}\mu^+\mu^-) = \mathcal{A}_{\rm RAW}(B \to K^{(*)}\mu^+\mu^-) - \mathcal{A}_{\rm RAW}(B \to J/\Psi K^{(*)})$$

 A_{CP} (B –> J/Ψ $K^{(^{\ast})}$) assumed to be zero

LHCb

difference removes production and detection efficiencies

LHCb $\mathcal{BR}(B \to K\mu^+\mu^-)$

- > Branching fraction measurement for $B^0 \rightarrow K^0 \mu\mu$, $B^+ \rightarrow K^+ \mu\mu$ and $B^+ \rightarrow K^{*+} \mu\mu$ ($B^0 \rightarrow K^{*0} \mu\mu$ to be updated soon with detailed study of s-wave contribution)
- ➢ Full Run-2 dataset (3fb⁻¹)
- > normalized to resonant B -> J/ Ψ K channels

Decay mode	Signal yield
$B^+ \rightarrow K^+ \mu^+ \mu^-$	4746 ± 81
$B^0 \rightarrow K^0_{ m s} \mu^+ \mu^-$	176 ± 17
$B^+ \to K^{*+} (\to K^0_{\rm s} \pi^+) \mu^+ \mu^-$	162 ± 16

$$B^0 \to K^{*0} (\to K^+ \pi^-) \mu^+ \mu^-$$
 2361 ± 56

HCD Isospin asymmetries of $B \to K \mu^+ \mu^-$ LHCb-PAPER-2014-006 arXiv:1403.8044v3

Isospin asymmetry is determined from measured branching fractions:

$$A_{\rm I} = \frac{\mathcal{B}(B^0 \to K^{(*)0}\mu^+\mu^-) - (\tau_0/\tau_+)\mathcal{B}(B^+ \to K^{(*)+}\mu^+\mu^-))}{\mathcal{B}(B^0 \to K^{(*)0}\mu^+\mu^-) + (\tau_0/\tau_+)\mathcal{B}(B^+ \to K^{(*)+}\mu^+\mu^-))}$$

 SM prediction is O(1%) below J/Ψ resonance, even smaller above JHEP 01 (2003) 074, JHEP 02 (2013) 010, Phys. Rev D88 (2013) 094004
 previous measurements from Babar, Belle, LHCb (1fb⁻¹)

Phys. Rev. D86 (2012) 032012, Phys. Rev. Lett. 103 (2009) 171801, JHEP 07 (2012) 133

supersedes previous LHCb result (quoted 4.4σ difference to zero) ->inclusion of 2012 dataset, updated reconstruction and selection, changes in test statistics

- Lepton universality in SM -> R_K predicted to be 1 in SM within O(10⁻³) JHEP 12 (2007) 040, Phys. Rev. Lett. 111 (2013) 162002
- > First measurement of LHCb, uses full $3fb^{-1}$ dataset in $1 < q^2 < 6 \text{ GeV}^2/c^4$

R_K measured as ratio of relative branching fractions between B⁺ -> K⁺ II and B⁺ -> J/Ψ K⁺
 -> cancellation of systematic uncertainties

- $B^+ \rightarrow K^+ ee$ mass shape affected by
- number of bremsstrahlung photons, transverse momentum of electron and occupancy
- -> sample divided in three trigger categories / B⁺ -> J/ Ψ K⁺ to investigate shape dependence

Electroweak penguins are an excellent way for indirect NP searches

LHCb is a unique ground to study these decays:

 a lot of different EW penguin decays have been investigated
 plenty of interesting results (not all presented today) angular observables, CP asymmetries, branching fractions, ...

-> In general good agreement with SM, but some small tensions: branching fractions, arXiv:1403.8044v3, P₅' of B⁰ -> K^{*} μμ, Phys. Rev. Lett. 111 (2013) 191801

More to come...

- Angular analysis of $B^0 \rightarrow K^* \mu \mu$ with 3fb⁻¹

- ...

Stay tuned... penguins are always good for surprises!

Backup

C. Linn (CERN) | EW penguin decays SUSY 2014, Manchester

Invariant mass distributions in bins of q²

Differential branching fraction:

$$\frac{\mathrm{d}\mathcal{B}}{\mathrm{d}q^2} = \frac{1}{q_{\max}^2 - q_{\min}^2} \frac{N_{\mathrm{sig}}}{N_{K^{*0}J/\psi}} \frac{\varepsilon_{K^{*0}J/\psi}}{\varepsilon_{K^{*0}\mu^+\mu^-}} \times \mathcal{B}(B^0 \to K^{*0}J/\psi) \times \mathcal{B}(J/\psi \to \mu^+\mu^-)$$

Folding of angular distributions:

$$\hat{\phi} = \begin{cases} \phi + \pi & \text{if } \phi < 0\\ \phi & \text{otherwise} \end{cases}$$

LHCb-PAPER-2013-019 JHEP 08 (2013) 131

Differential decay rate with reduced number of observables:

$$\begin{aligned} \frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2 \,\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\hat{\phi}} &= \frac{9}{16\pi} \left[F_{\mathrm{L}}\cos^2\theta_K + \frac{3}{4}(1-F_{\mathrm{L}})(1-\cos^2\theta_K) - F_{\mathrm{L}}\cos^2\theta_K (2\cos^2\theta_\ell - 1) + \frac{1}{4}(1-F_{\mathrm{L}})(1-\cos^2\theta_K)(2\cos^2\theta_\ell - 1) + \frac{1}{4}(1-F_{\mathrm{L}})(1-\cos^2\theta_K)(2\cos^2\theta_\ell - 1) + S_3(1-\cos^2\theta_K)(1-\cos^2\theta_\ell)\cos2\hat{\phi} + \frac{4}{3}A_{\mathrm{FB}}(1-\cos^2\theta_K)\cos\theta_\ell + A_9(1-\cos^2\theta_K)(1-\cos^2\theta_\ell)\sin2\hat{\phi} \right].\end{aligned}$$

Constraints of observables to keep decay rate positive in allowed phase space:

$$|A_{\rm FB}| \le \frac{3}{4}(1 - F_{\rm L})$$
, $|A_9| \le \frac{1}{2}(1 - F_{\rm L})$ and $|S_3| \le \frac{1}{2}(1 - F_{\rm L})$

C. Linn (CERN) | EW penguin decays

LHCD Analysis of $B^0 \to K^* \mu^+ \mu^-$

LHCb-PAPER-2013-019 JHEP 08 (2013) 131

Results of angular analysis:

$q^2 (\mathrm{GeV}^2/c^4)$	$F_{ m L}$	$A_{\rm FB}$	S_3	S_9
0.10 - 2.00	$0.37^{+0.10}_{-0.09}{}^{+0.04}_{-0.03}$	$-0.02^{+0.12}_{-0.12}{}^{+0.01}_{-0.01}$	$-0.04^{+0.10}_{-0.10}{}^{+0.01}_{-0.01}$	$0.05^{+0.10}_{-0.09}{}^{+0.01}_{-0.01}$
(uncorrected)				
0.10 - 2.00	$0.37 {}^{+0.10}_{-0.09} {}^{+0.04}_{-0.03}$	$-0.02^{+0.13}_{-0.13}{}^{+0.01}_{-0.01}$	$-0.05^{+0.12}_{-0.12}{}^{+0.01}_{-0.01}$	$0.06^{+0.12}_{-0.12}{}^{+0.01}_{-0.01}$
(corrected)				
2.00 - 4.30	$0.74 {}^{+0.10}_{-0.09} {}^{+0.02}_{-0.03}$	$-0.20 {}^{+0.08}_{-0.08} {}^{+0.01}_{-0.01}$	$-0.04 {}^{+0.10}_{-0.06} {}^{+0.01}_{-0.01}$	$-0.03^{+0.11}_{-0.04}{}^{+0.01}_{-0.01}$
4.30 - 8.68	$0.57 {}^{+0.07}_{-0.07} {}^{+0.03}_{-0.03}$	$0.16 {}^{+0.06}_{-0.05} {}^{+0.01}_{-0.01}$	$0.08 {}^{+0.07}_{-0.06} {}^{+0.01}_{-0.01}$	$0.01 {}^{+0.07}_{-0.08} {}^{+0.01}_{-0.01}$
10.09 - 12.86	$0.48 {}^{+0.08}_{-0.09} {}^{+0.03}_{-0.03}$	$0.28 {}^{+0.07}_{-0.06} {}^{+0.02}_{-0.02}$	$-0.16^{+0.11}_{-0.07}{}^{+0.01}_{-0.01}$	$-0.01^{+0.10}_{-0.11}{}^{+0.01}_{-0.01}$
14.18 - 16.00	$0.33^{+0.08}_{-0.07}{}^{+0.02}_{-0.03}$	$0.51 {}^{+0.07}_{-0.05} {}^{+0.02}_{-0.02}$	$0.03 {}^{+0.09}_{-0.10} {}^{+0.01}_{-0.01}$	$0.00 {}^{+0.09}_{-0.08} {}^{+0.01}_{-0.01}$
16.00 - 19.00	$0.38 {}^{+0.09}_{-0.07} {}^{+0.03}_{-0.03}$	$0.30 {}^{+0.08}_{-0.08} {}^{+0.01}_{-0.02}$	$-0.22^{+0.10}_{-0.09}{}^{+0.02}_{-0.01}$	$0.06 {}^{+0.11}_{-0.10} {}^{+0.01}_{-0.01}$
1.00 - 6.00	$0.65^{+0.08}_{-0.07}{}^{+0.03}_{-0.03}$	$-0.17^{+0.06}_{-0.06}{}^{+0.01}_{-0.01}$	$0.03 {}^{+0.07}_{-0.07} {}^{+0.01}_{-0.01}$	$0.07^{+0.09}_{-0.08}{}^{+0.01}_{-0.01}$

$q^2 (\mathrm{GeV}^2/c^4)$	A_9	$A_{ m T}^2$	$A_{\mathrm{T}}^{\mathrm{Re}}$	p-value
0.10 - 2.00	$0.12 {}^{+0.09}_{-0.09} {}^{+0.01}_{-0.01}$	$-0.14^{+0.34}_{-0.30}{}^{+0.02}_{-0.02}$	$-0.04^{+0.26}_{-0.24}{}^{+0.02}_{-0.01}$	0.18
(uncorrected)				
0.10 - 2.00	$0.14 {}^{+0.11}_{-0.11} {}^{+0.01}_{-0.01}$	$-0.19^{+0.40}_{-0.35}{}^{+0.02}_{-0.02}$	$-0.06^{+0.29}_{-0.27}{}^{+0.02}_{-0.01}$	_
(corrected)				
2.00 - 4.30	$0.06 {}^{+0.12}_{-0.08} {}^{+0.01}_{-0.01}$	$-0.29^{+0.65}_{-0.46}{}^{+0.02}_{-0.03}$	$-1.00 {}^{+0.13}_{-0.00} {}^{+0.04}_{-0.00}$	0.57
4.30 - 8.68	$-0.13^{+0.07}_{-0.07}{}^{+0.01}_{-0.01}$	$0.36 {}^{+0.30}_{-0.31} {}^{+0.03}_{-0.03}$	$0.50 {}^{+0.16}_{-0.14} {}^{+0.01}_{-0.03}$	0.71
10.09 - 12.86	$0.00 {}^{+0.11}_{-0.11} {}^{+0.01}_{-0.01}$	$-0.60^{+0.42}_{-0.27}{}^{+0.05}_{-0.02}$	$0.71 {}^{+0.15}_{-0.15} {}^{+0.01}_{-0.03}$	_
14.18 - 16.00	$-0.06^{+0.11}_{-0.08}{}^{+0.01}_{-0.01}$	$0.07 {}^{+0.26}_{-0.28} {}^{+0.02}_{-0.02}$	$1.00 {}^{+0.00}_{-0.05} {}^{+0.00}_{-0.02}$	0.38
16.00 - 19.00	$0.00 {}^{+0.11}_{-0.10} {}^{+0.01}_{-0.01}$	$-0.71^{+0.35}_{-0.26}{}^{+0.06}_{-0.04}$	$0.64 {}^{+0.15}_{-0.15} {}^{+0.01}_{-0.02}$	0.28
1.00 - 6.00	$0.03 {}^{+0.08}_{-0.08} {}^{+0.01}_{-0.01}$	$0.15{}^{+0.39}_{-0.41}{}^{+0.03}_{-0.03}$	$-0.66^{+0.24}_{-0.22}{}^{+0.04}_{-0.01}$	0.72

Results of angular analysis:

C. Linn (CERN) | EW penguin decays

Determination of zero-crossing point:

$$A_{\rm FB}(q^2) = \frac{P_{\rm F}(q^2) - P_{\rm B}(q^2)}{P_{\rm F}(q^2) + P_{\rm B}(q^2)}$$

LHCb-PAPER-2013-037 Phys. Rev. Lett. 111 (2013) 191801

Transformation of angular distributions:

$$P'_{4}, S_{4}: \begin{cases} \phi \to -\phi & \text{for } \phi < 0\\ \phi \to \pi - \phi & \text{for } \theta_{\ell} > \pi/2\\ \theta_{\ell} \to \pi - \theta_{\ell} & \text{for } \theta_{\ell} > \pi/2, \end{cases}$$

$$P_6', S_7: \begin{cases} \phi \to \pi - \phi & \text{for } \phi > \pi/2 \\ \phi \to -\pi - \phi & \text{for } \phi < -\pi/2 \\ \theta_\ell \to \pi - \theta_\ell & \text{for } \theta_\ell > \pi/2, \end{cases}$$

 $\oint \phi \to \pi - \phi$ for $\phi > \pi/2$

$$P'_{5}, S_{5}: \begin{cases} \phi \to -\phi & \text{for } \phi < 0 \\ \theta_{\ell} \to \pi - \theta_{\ell} & \text{for } \theta_{\ell} > \pi/2, \end{cases} \qquad P'_{8}, S_{8}: \begin{cases} \phi \to -\pi - \phi & \text{for } \phi < -\pi/2 \\ \theta_{K} \to \pi - \theta_{K} & \text{for } \theta_{\ell} > \pi/2 \\ \theta_{\ell} \to \pi - \theta_{\ell} & \text{for } \theta_{\ell} > \pi/2. \end{cases}$$

FF independent observables

LHCb-PAPER-2013-037 Phys. Rev. Lett. 111 (2013) 191801

q^2 [GeV ² / c^4]	P_4'	P_5'	P_6'	P'_8
0.10 - 2.00	$0.00^{+0.26}_{-0.26} \pm 0.03$	$0.45^{+0.19}_{-0.22} \pm 0.09$	$-0.24^{+0.19}_{-0.22} \pm 0.05$	$-0.06^{+0.28}_{-0.28}\pm0.02$
2.00 - 4.30	$-0.37^{+0.29}_{-0.26}\pm0.08$	$0.29^{+0.39}_{-0.38}\pm0.07$	$0.15^{+0.36}_{-0.38}\pm0.05$	$-0.15^{+0.29}_{-0.28}\pm0.07$
4.30 - 8.68	$-0.59^{+0.15}_{-0.12}\pm0.05$	$-0.19^{+0.16}_{-0.16}\pm0.03$	$-0.04^{+0.15}_{-0.15}\pm0.05$	$0.29^{+0.17}_{-0.19}\pm0.03$
10.09 - 12.90	$-0.46^{+0.20}_{-0.17}\pm0.03$	$-0.79^{+0.16}_{-0.19}\pm0.19$	$-0.31^{+0.23}_{-0.22}\pm0.05$	$-0.06^{+0.23}_{-0.22}\pm0.02$
14.18 - 16.00	$0.09^{+0.35}_{-0.27} \pm 0.04$	$-0.79^{+0.20}_{-0.13}\pm0.18$	$-0.18^{+0.25}_{-0.24}\pm0.03$	$-0.20^{+0.30}_{-0.25}\pm0.03$
16.00 - 19.00	$-0.35^{+0.26}_{-0.22}\pm0.03$	$-0.60^{+0.19}_{-0.16}\pm0.09$	$0.31^{+0.38}_{-0.37}\pm0.10$	$0.06^{+0.26}_{-0.27}\pm0.03$
1.00 - 6.00	$-0.29^{+0.18}_{-0.16}\pm0.03$	$0.21^{+0.20}_{-0.21}\pm0.03$	$-0.18^{+0.21}_{-0.21}\pm0.03$	$0.23^{+0.18}_{-0.19}\pm0.02$
$q^2 [\text{GeV}^2/c^4]$	S_4	S_5	S_7	S_8
0.10 - 2.00	$0.00^{+0.12}_{-0.12} \pm 0.03$	$0.22^{+0.09}_{-0.10} \pm 0.04$	$-0.11^{+0.11}_{-0.11} \pm 0.03$	$-0.03^{+0.13}_{-0.12} \pm 0.01$
2.00 - 4.30	$-0.14^{+0.13}_{-0.12}\pm0.03$	$0.11^{+0.14}_{-0.13}\pm0.03$	$0.06^{+0.15}_{-0.15} \pm 0.02$	$-0.06^{+0.12}_{-0.12}\pm0.02$
4.30 - 8.68	$-0.29^{+0.06}_{-0.06}\pm0.02$	$-0.09^{+0.08}_{-0.08}\pm0.01$	$-0.02^{+0.07}_{-0.08}\pm0.04$	$0.15^{+0.08}_{-0.08}\pm0.01$
10.09 - 12.90	$-0.23^{+0.09}_{-0.08}\pm0.02$	$-0.40^{+0.08}_{-0.10}\pm0.10$	$-0.16^{+0.11}_{-0.12}\pm0.03$	$-0.03^{+0.10}_{-0.10}\pm0.01$
14.18 - 16.00	$0.04^{+0.14}_{-0.08}\pm0.01$	$-0.38^{+0.10}_{-0.09}\pm0.09$	$-0.09^{+0.13}_{-0.14}\pm0.01$	$-0.10^{+0.13}_{-0.12}\pm0.02$
16.00 - 19.00	$-0.17^{+0.11}_{-0.09} \pm 0.01$	$-0.29^{+0.09}_{-0.08} \pm 0.04$	$0.15^{+0.16}_{-0.15} \pm 0.03$	$0.03^{+0.12}_{-0.12} \pm 0.02$

C. Linn (CERN) | EW penguin decays

LHCb-PAPER-2014-032 PRELIMINARY

Results for $B^0 \rightarrow K^* \mu \mu$

q^2 bin [GeV ² / c^4]	yield	\mathcal{A}_{CP}	stat. error	syst. error
0.10 - 0.98	$304{\pm}18$	-0.007	0.060	0.006
1.10 - 2.00	105 ± 11	-0.175	0.106	0.009
2.00 - 3.00	120 ± 13	-0.145	0.102	0.008
3.00 - 4.00	101 ± 12	-0.012	0.113	0.014
4.00 - 5.00	120 ± 13	-0.075	0.106	0.012
5.00 - 6.00	143 ± 13	-0.029	0.097	0.009
6.00 - 7.00	144 ± 14	0.021	0.095	0.008
7.00 - 8.00	177 ± 15	0.100	0.087	0.006
11.0 - 11.8	144 ± 14	-0.020	0.093	0.007
11.8 - 12.5	147 ± 14	0.032	0.093	0.022
15.0 - 16.0	205 ± 16	-0.124	0.075	0.009
16.0 - 17.0	$216{\pm}16$	-0.001	0.074	0.010
17.0 - 18.0	169 ± 14	-0.058	0.085	0.009
18.0 - 19.0	105 ± 11	-0.053	0.108	0.016
0.10-19.0	$2190{\pm}52$	-0.034	0.024	0.003

Results for $B^+ \rightarrow K^+ \mu \mu$

q^2 bin [GeV ² / c^4]	yield	$\mathcal{A}_{C\!P}$	stat. error	syst. error
0.10-0.98	387 ± 22	0.089	0.057	0.001
1.10 - 2.00	277 ± 19	-0.003	0.068	0.002
2.00 - 3.00	367 ± 22	0.043	0.059	0.001
3.00 - 4.00	334 ± 21	-0.033	0.063	0.001
4.00 - 5.00	307 ± 20	-0.020	0.064	0.001
5.00 - 6.00	332 ± 21	0.032	0.062	0.002
6.00 - 7.00	355 ± 22	0.027	0.060	0.001
7.00 - 8.00	371 ± 22	0.042	0.059	0.002
11.0 - 11.8	232 ± 18	-0.046	0.076	0.002
11.8 - 12.5	247 ± 17	0.019	0.070	0.002
15.0 - 16.0	287 ± 19	0.121	0.065	0.004
16.0 - 17.0	287 ± 19	0.029	0.066	0.001
17.0 - 18.0	349 ± 21	-0.029	0.058	0.001
18.0 - 19.0	222 ± 17	-0.060	0.074	0.003
19.0 - 20.0	121 ± 13	-0.047	0.105	0.003
20.0 - 21.0	95 ± 12	-0.011	0.120	0.003
21.0 - 22.0	50 ± 8	-0.289	0.161	0.004
0.10-22.0	4630 ± 78	0.013	0.017	0.001

C. Linn (CERN) | EW penguin decays

LHCb-PAPER-2014-006 arXiv:1403.8044v3

LHCb-PAPER-2014-006 arXiv:1403.8044v3

Branching fraction:

$$\frac{d\mathcal{B}}{dq^2} = \frac{N(B \to K^{(*)}\mu^+\mu^-)}{N(B \to J/\psi K^{(*)})} \cdot \frac{\varepsilon(B \to J/\psi K^{(*)})}{\varepsilon(B \to K^{(*)}\mu^+\mu^-)} \cdot \frac{\mathcal{B}(B \to J/\psi K^{(*)})\mathcal{B}(J/\psi \to \mu^+\mu^-)}{(q_{\max}^2 - q_{\min}^2)}$$

Branching fraction of normalization channels:

$$\mathcal{B}(B^+ \to J/\psi K^+) = (0.998 \pm 0.014 \pm 0.040) \times 10^{-3},$$

$$\mathcal{B}(B^0 \to J/\psi K^0) = (0.928 \pm 0.013 \pm 0.037) \times 10^{-3},$$

$$\mathcal{B}(B^+ \to J/\psi K^{*+}) = (1.431 \pm 0.027 \pm 0.090) \times 10^{-3},$$

$$\mathcal{B}(B^0 \to J/\psi K^{*0}) = (1.331 \pm 0.025 \pm 0.084) \times 10^{-3},$$

Systematic uncertainties:

Source	Branching fraction	Isospin asymmetry
$B \rightarrow J/\psi K^{(*)}$ branching fractions	4% - 6%	_
Physics model	1% - 2%	1% - 2%
Simulation mis-modelling	1%-3%	1%-3%

C. Linn (CERN) | EW penguin decays

LHCb $\mathcal{BR}(B \to K\mu^+\mu^-)$

LHCb-PAPER-2014-006 arXiv:1403.8044v3

Isospsin asymmetry comparison 2011 and 2012 data set:

C. Linn (CERN) | EW penguin decays

Lepton universality

LHCb-PAPER-2014-024 arXiv:1406.6482v1

$$R_K = \left(\frac{\mathcal{N}_{K^+\mu^+\mu^-}}{\mathcal{N}_{K^+e^+e^-}}\right) \left(\frac{\mathcal{N}_{J/\psi\,(e^+e^-)K^+}}{\mathcal{N}_{J/\psi\,(\mu^+\mu^-)K^+}}\right) \left(\frac{\epsilon_{K^+e^+e^-}}{\epsilon_{K^+\mu^+\mu^-}}\right) \left(\frac{\epsilon_{J/\psi\,(\mu^+\mu^-)K^+}}{\epsilon_{J/\psi\,(e^+e^-)K^+}}\right)$$

C. Linn (CERN) | EW penguin decays

Invariant mass fits of B⁺ -> K⁺ $\pi^+ \pi^- \mu^+ \mu^-$ in bins of q²

Results branching fraction:

q^2 bin [GeV ² / c^4]	$N_{ m sig}$	$\frac{\mathrm{d}\mathcal{B}}{\mathrm{d}q^2} \left[\times 10^{-8} \mathrm{GeV}^{-2} c^4 \right]$
[0.10, 2.00]	$134.1^{+12.9}_{-12.3}$	$7.01^{+0.69}_{-0.65}\pm0.47$
[2.00, 4.30]	$56.5^{+9.7}_{-9.1}$	$2.34^{+0.41}_{-0.38}\pm0.15$
[4.30, 8.68]	$119.9{}^{+14.6}_{-13.7}$	$2.30^{+0.28}_{-0.26}\pm0.20$
[10.09, 12.86]	$54.0^{+10.1}_{-9.4}$	$1.83^{+0.34}_{-0.32}\pm 0.17$
[14.18, 19.00]	$3.3^{+2.8}_{-2.1}$	$0.10^{+0.08}_{-0.06}\pm 0.01$
[1.00, 6.00]	$144.8{}^{+14.9}_{-14.3}$	$2.75^{+0.29}_{-0.28}\pm0.16$

C. Linn (CERN) | EW penguin decays

Reconstructed K⁺ π^+ π mass of B⁺ -> K⁺ π^+ $\pi^ \mu^+$ μ^- signal decays:

