

adiative Decays at LHCb

Vicente J Rives Molina on behalf of the LHCb Collaboration

SUSY 2014, Manchester, July 22nd, 2014

Universitat de Barcelona

Radiative Decays at LHCb

Overview

The LHCb experiment.

Theory introduction:

• Radiative decays within the SM and New Physics scenarios.

Measurement of the photon polarization with $B \rightarrow K\pi\pi\gamma$:

- Photon polarization in $B \rightarrow K_{res} \gamma$ decays.
- Up-down asymmetry.
- Angular fit.

Summary and Future.

[PRL 112, 161801 (2014)]

Radiative Decays at LHCb

The LHCb Experiment

Radiative Decays at LHCb

The LHCb Experiment

The LHCb Experiment

Excellent particle identification: π/K separation over 2-100 GeV ($\epsilon_{\kappa} \sim 90\%$ for $\sim 5\% \pi \rightarrow K$ mis-ID) Powerful muon ID ($\epsilon_{\mu} \sim 97\%$ for $\sim 1-3\% \pi \rightarrow \mu$ mis-ID)

SUSY2014

Radiative Decays at LHCb

Radiative Decays at LHCb

LHCb Run-I Performance

Radiative B Decays within the SM

- Radiative decays are FCNC processes (b \rightarrow s γ), not allowed at tree level:
 - They proceed through penguin transitions.
- Many possible observables reachable at the LHC:
 - Branching ratios, photon polarization (as a null-test of the SM) and different asymmetries (CP, isospin).
- Exclusive decays difficult from theoretical point of view due to form factor:
 - Need to find form-factor free observables (use of ratios that cancel out the form factors..).

Radiative Decays at LHCb

USY2014

Radiative B Decays within New Physics

- The photon in the final state allows studies not reachable through other analyses.
- The SM predicts the photon to be (almost completely) left-handed polarized (corrections of order m_s/m_b).
- Several NP models introduce right-handed currents. New particles could change the chirality inside the loop, producing chiral enhancement:
 - m_t/m_b from LRSM [Babu *et at.*, Phys.Lett.B333:196-201,1994].
 - m_{susy}/m_b in SUSY with δ_{RI} mass insertions [Gabbiani *et al.*, Nuclear an an Physics B 477 (1996) 321-352].

v u,c,t

u,c,t

Challenges for Radiative Decays at LHCb

• Distinct experimental signature with a high E_{τ} photon:

- Large levels of background are expected in a *pp* machine.
- Mass resolution dominated by photon reconstruction.

Radiative Decays at LHCb

Measuring the γ Polarization

Different approaches:

- Transverse asymmetry in $B^0 \rightarrow K^*I^+I^-$.
- Time-dependent analyses of $B_{(s)} \rightarrow f^{CP}\gamma$:

•
$$B_s \rightarrow \phi \gamma$$
 and $B^0 \rightarrow K_s \pi \gamma$

- Angular distribution of radiative decays with 3 charged tracks in the final state:
 - $B \rightarrow K\pi\pi\gamma$, $B \rightarrow \phi K\gamma$, $B \rightarrow \pi\pi\pi\gamma$
- b-baryons decays: $\Lambda_b \rightarrow \Lambda^{(*)} \gamma$

Radiative Decays at LHCb

ONGOING

ONGOING

Measuring the γ Polarization

Different approaches:

- Transverse asymmetry in $B^0 \rightarrow K^* I^+ I^-$.
- Time-dependent analyses of $B_{(s)} \rightarrow f^{CP}\gamma$:

•
$$B_s \rightarrow \phi \gamma$$
 and $B^0 \rightarrow K_s \pi \gamma$

- Angular distribution of radiative decays with 3 charged tracks in the final state:
 - $B \rightarrow K\pi\pi\gamma$, $B \rightarrow \phi K\gamma$, $B \rightarrow \pi\pi\pi\gamma$
- b-baryons decays: $\Lambda_b \rightarrow \Lambda^{(*)} \gamma$

Today's talk, with B→Kππγ [PRL 112, 161801 (2014)]

Radiative Decays at LHCb

$B \rightarrow K\pi\pi\gamma$ at LHCb

Inclusive study of the $K\pi\pi$ system with mass range of [1.1, 1.9] GeV.

Use of the whole Run-I dataset, corresponding to 3fb⁻¹.

Study of angular distributions to search for the photon polarization.

[PRL 112, 161801 (2014)]

Radiative Decays at LHCb

$B \rightarrow K \pi \pi \gamma$ at LHCb

Inclusive study of the $K\pi\pi$ system with mass range of [1.1, 1.9] GeV.

Use of the whole Run-I dataset, corresponding to 3fb⁻¹.

Study of angular distributions to search for the photon polarization.

Radiative Decays at LHCb

Towards the photon polarization

The angular structure of the decay can be used to find the photon polarization:

where *C* accounts for the integral over the Dalitz plot and the angular distribution [PRL 112, 161801 (2014)].

USY2014

Radiative Decays at LHCb

Weak amplitudes

Photon Polarization in B $\rightarrow K_{res}\gamma$

Photon polarization given by:

Gronau *et al.* [PRD 66 054008] show that the γ polarization is independent of the *K* resonance:

$$\frac{|c_{R}|}{|c_{L}|} = \frac{|C_{7R}|}{|C_{7L}|} \longrightarrow \lambda_{\gamma} = \frac{|C_{7R}|^{2} - |C_{7L}|^{2}}{|C_{7R}|^{2} + |C_{7L}|^{2}} + 1 \text{ for } \overline{b}$$
-1 for b

The amplitude of a K resonance decay can be written in terms of the helicity amplitude J_{μ} : Polarization vector

$$A_{L(R)}(s, s_{13}, s_{23}, \cos\theta) = \varepsilon^{\mu}_{K, L(R)} J_{\mu}$$

Contains all the amplitude info

"easy" if only **one** (1⁺) intermediate resonance [Kou *et al*, PhysRevD. 83.094007] [Gronau *et al*, PhysRevD.66.054008]: γ polarization goes with odd

$$\frac{d\Gamma(B \to K_{res}\gamma \to K\pi\pi\gamma)}{dsds_{13}ds_{23}d\cos\theta} \propto \frac{1}{4} |\vec{J}|^2 (1 + \cos^2\theta) + \lambda_{\gamma} \frac{1}{2} \cos\theta \operatorname{Im}[\vec{n} \cdot (\vec{J} \times \vec{J}^*)]$$

Radiative Decays at LHCb

Photon Polarization in B $\rightarrow K_{res}\gamma$

Photon polarization given by:

Weak amplitudes

Gronau *et al.* [PRD 66 054008] show that the γ polarization is independent of the *K* resonance:

$$\frac{|c_{R}|}{|c_{L}|} = \frac{|C_{7R}|}{|C_{7L}|} \longrightarrow \lambda_{\gamma} = \frac{|C_{7R}|^{2} - |C_{7L}|^{2}}{|C_{7R}|^{2} + |C_{7L}|^{2}} + 1 \text{ for } \overline{b}$$
-1 for b

The amplitude of a K resonance decay can be written in terms of the helicity amplitude J_{μ} : Polarization vector

$$A_{L(R)}(s, s_{13}, s_{23}, \cos\theta) = \varepsilon_{K, L(R)}^{\mu} J_{\mu}$$

Contains all the amplitude info

SUSY2014

Radiative Decays at LHCb

Β→Κππγ

Many contributions, interference between 1^+ , 1^- , 2^+ resonances [Gronau *et al*, PhysRevD.66.054008] impossible to separate without full amplitude analysis.

Inclusive analysis with theoretically motivated binning (chosen beforehand). The angular analysis is performed region by region.

 $\lambda_{\!\scriptscriptstyle \nu}$ goes with odd powers of $cos\theta$

$$\frac{d\Gamma(\Sigma B \to K_{res}\gamma \to P_1P_2P_3\gamma)}{dsds_{13}ds_{23}\cos\theta} \propto \sum_{j=even} a_j(s_{13}, s_{23})\cos^j\theta + \lambda_{\gamma}\sum_{j=odd} a_j(s_{13}, s_{23})\cos^j\theta$$

Radiative Decays at LHCb

Angular fit coefficients

Angular distributions for each $K\pi\pi$ mass region fitted with combination of Legendre polynomials (up to order 4):

Angular fit analysis

From the different values for the coefficients we can extract a value for the A_{UD} for each of the $K\pi\pi$ invariant mass region.

The up-down asymmetry is determined by: $A_{UD} = c_1 - \frac{c_3}{A}$

	[1.1, 1.3]	[1.3, 1.4]	[1.4, 1.6]	[1.6, 1.9]
c ₁	6.3 ± 1.7	5.4 ± 2.0	4.3 ± 1.9	-4.6 ± 1.8
c ₂	31.6 ± 2.2	27.0 ±2.6	43.1 ± 2.3	28.0 ± 2.3
с ₃	-2.1 ± 2.6	2.0 ± 3.1	-5.2 ± 2.8	-0.6 ± 2.7
C ₄	3.0 ±3.0	6.8 ± 3.6	8.1 ± 3.1	-6.2 ± 3.2
A _{UD}	6.9 ±1.7	4.9 ± 2.0	5.6 ± 1.8	-4.5 ± 1.9

This is a statistically-limited analysis.

Up-down asymmetry results \mathbf{A}_{ud} 4.0σ 2.5σ 3.1σ **2.4**σ 0.1 LHCb 0.05 0 -0.05 -0.1 1200 1400 1800 1600 $M(K\pi\pi)$ [MeV/ c^2]

SUSY2014

Radiative Decays at LHCb

Combining the four bins, the significance of the A_{UD} being different from zero is of **5.2** σ . This can't be translated into a measurement of the γ polarization due to theoretical limitations.

First observation of photon polarization in $b \rightarrow s\gamma$ transitions

Radiative Decays at LHCb

Summary and Future

A study of $B \rightarrow K\pi\pi\gamma$ decay is performed on $3fb^{-1}$ data sample.

We have reported the first observation of photon polarization in $b \rightarrow s\gamma$ transitions, with a 5.2 σ significance.

More theoretical input is needed to translate measured up-down asymmetry into a measurement of the photon polarization.

The measurement of the photon polarization at LHCb is also promising with:

- Proper time distribution of $B_s \rightarrow \phi \gamma$.
- Transverse asymmetry in $B \rightarrow K^*ee$.
- Angular distribution in $B \rightarrow \phi K \gamma$.
- Radiative b-baryon decays: $\Lambda_b \to \Lambda^{(*)}\gamma$, $\Xi_b \to \Xi^{(*)}\gamma$.

Radiative Decays at LHCb

Summary and Future

A study of $B \rightarrow K\pi\pi\gamma$ decay is performed on $3fb^{-1}$ data sample.

We have reported the first observation of photon polarization in $b \rightarrow s\gamma$ transitions, with a 5.2 σ significance.

More theoretical input is needed to translate measured up-down asymmetry into a measurement of the photon polarization.

The measurement of the photon polarization at LHCb is also promising with:

- Proper time distribution of $B_s \rightarrow \phi \gamma$.
- Transverse asymmetry in $B \rightarrow K^*ee$.
- Angular distribution in $B \rightarrow \phi K \gamma$.
- Radiative b-baryon decays: $\Lambda_{b} \rightarrow \Lambda^{(*)}\gamma$, $\Xi_{b} \rightarrow \Xi^{(*)}\gamma$.

THANK YOU!

Back-up

Up-down asymmetry

$$A_{UD} = \frac{\int_{0}^{1} d\cos\theta \frac{d\Gamma}{d\cos\theta} - \int_{-1}^{0} d\cos\theta \frac{d\Gamma}{d\cos\theta}}{\int_{-1}^{1} d\cos\theta \frac{d\Gamma}{d\cos\theta}} = \frac{3}{4} \lambda_{\gamma} \frac{\int ds \, ds_{13} \, ds_{23} \operatorname{Im}[\vec{n} \cdot (\vec{J} \times \vec{J}^{*})]}{\int ds \, ds_{13} \, ds_{23} \, |\vec{J}|^{2}}$$

In the case of a single resonance

If J is known, the up-down asymmetry allows the computation of the photon polarization

Radiative Decays at LHCb

Why three charged particles?

Three tracks is the minimum needed to build a P-odd triple product proportional to the photon polarization using the final state momenta

Up-down asymmetry with counting method

The counting method gives compatible results

