Interplay of the LHC and Dark Matter search experiments in unravelling Natural Supersymmetry

Alexander Belyaev

Southampton University & Rutherford Appleton LAB

Collaborators:

Daniele Barducci, Aoife Bharucha, Werner Porod, Veronica Sanz ArXiv:1405.1617 (Les Houches 2013: Physics at TeV Colliders, #20)

The University of Manchester

LHC&DM search interplay in unravelling Natural SUSY

Outline

- Properties SUSY in the Focus Point region: low fine-tuning, low Dark Matter (DM) relic density, potentially high direct DM detection rates, compressed spectrum and mono-jet signatures at the LHC
- The "Far" Focus Point (FFP) region compressed winohiggsino scenario with heavy coloured sparticles - the worst case scenario (for LHC observation) to be prepared for!: the status of the current LHC@8TeV mono-jet searches and their MSSM interpretations; LHC@13TeV projections and complementary of the DDM
 - detection LHC searches

SUSY principles

boson-fermion symmetry aimed to unify all forces in nature $Q|BOSON\rangle = |FERMION\rangle, Q|FERMION\rangle = |BOSON\rangle$

extends Poincare algebra to Super-Poincare Algebra:

the most general set of space-time symmetries! (1971-74)

 $\{f,f\}=0, \ \ [B,B]=0, \ \ \{Q_{lpha},ar{Q}_{eta}\}=2\gamma^{\mu}_{lphaeta}P_{\mu}$

Golfand and Likhtman'71; Ramond'71; Neveu, Schwarz'71; Volkov and Akulov'73; Wess and Zumino'74

SUSY principles

boson-fermion symmetry aimed to unify all forces in nature $Q|BOSON\rangle = |FERMION\rangle, Q|FERMION\rangle = |BOSON\rangle$

extends Poincare algebra to Super-Poincare Algebra:

the most general set of space-time symmetries! (1971-74)

 $\{f,f\}=0, \ \ [B,B]=0, \ \ \{Q_{lpha},ar{Q}_{eta}\}=2\gamma^{\mu}_{lphaeta}P_{\mu}$

Golfand and Likhtman'71; Ramond'71; Neveu, Schwarz'71; Volkov and Akulov'73; Wess and Zumino'74

R-parity guarantees Lightest SUSY particle (LSP) is stable - DM candidate!

Beauty of SUSY

h

- Provides good DM candidate LSP
- CP violation can be incorporated baryogenesis via leptogenesis
- Radiative EWSB
- Solves fine-tuning problem
- Provides gauge coupling unification
- local supersymmetry requires spin 2 boson – graviton!
- allows to introduce fermions into string theories

 $\Delta M_H^2 \sim M_{SUSY}^2 \log(\Lambda/M_{SUSY})$

Beauty of SUSY

- Provides good DM candidate LSP
- CP violation can be incorporated baryogenesis via leptogenesis
- Radiative EWSB
- Solves fine-tuning problem
- Provides gauge coupling unification
- local supersymmetry requires spin 2 boson – graviton!
- allows to introduce fermions into string theories

 $\frac{h_{t}}{\Delta M_{H}^{2}} \sim M_{SUSY}^{2} \log(\Lambda/M_{SUSY})$

But the real beauty of SUSY from my point of view is that It was not deliberately designed to solve the SM problems!

We are still inspired by this beauty ...

... but SUSY, where are you?!

Summary of CMS SUSY Results* in SMS framework

ICHEP 2014

LHC&DM search interplay in unravelling Natural SUSY

The EW measure of Fine Tuning

 $\mathcal{L}_{\text{MSSM}} = \mu \tilde{H}_{u}\tilde{H}_{d} + \text{h.c.} + (m_{H_{u}}^{2} + |\mu|^{2}) |H_{u}|^{2} + (m_{H_{d}}^{2} + |\mu|^{2}) |H_{d}|^{2} + \dots$

The EW measure requires that there be no large/unnatural cancellations in deriving m_{τ} from the weak scale scalar potential:

$$\frac{m_Z^2}{2} = \frac{(m_{H_d}^2 + \Sigma_d^d) - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{(\tan^2 \beta - 1)} - \mu^2 \simeq -m_{H_u}^2 - \mu^2$$

using fine-tuning definition which became standard Ellis, Engvist, Nanopoulos, Zwirner '86; Barbieri, Giudice '88

$$\Delta_{FT} = max[c_i], \quad c_i = \left| \frac{\partial \ln m_Z^2}{\partial \ln p_i} \right| = \left| \frac{p_i}{m_Z^2} \frac{\partial m_Z^2}{\partial p_i} \right|$$

one finds $\Delta_{FT} \simeq \Delta_{EW}$ which requires $\begin{aligned} |\mu^2| \simeq M_Z^2 \\ |m_{H_u}^2| \simeq M_Z^2 \end{aligned}$

The last one is GUT model-dependent, so we consider the value $|\mu^2|$ as a measure of the minimal fine-tuning

Natural SUSY in the Focus Point

It was recently argued [Baer, Barger, Mickelson '13] that EW fine-tuning in SUSY can be grossly overestimated by neglecting additional non-independent terms which lead to large cancellations favouring HB/FP for NSUSY

Alexander Belyaev

Far Focus Point Scenario

chargino-neutralino mass matrices

 M_2 real, $M_1 = |M_1|e^{-\Phi_1}$, $\mu = |\mu|e^{i\Phi_{\mu}}$

- Case of $\mu \leftrightarrow M1$, M2: $\chi^{0}_{1,2}$ and χ^{\pm} become quasi-degenerate and acquire large higgsino component. This provides a naturally low DM relic density via gaugino annihilation and co-annihilation processes into SM V's and H
- This is the case of relatively light higgsinos-electroweakinos compared to the other SUSY particles.
- This scenario is not just motivated by its simplicity, but also by the lack of evidence for SUSY to date, indicating that a weak scale SUSY spectrum is likely non-universal

- HB/FP parameter space is challenging to probe at the LHC even if the mass gap between gauginos is large enough to for leptonic signatures
 [Baer, AB, Krupovnickas, O'Farrill '04].
- The most challenging case takes place when only $\chi^0_{1,2}$ and χ^{\pm} are accessible at the LHC, and the mass gap between them is not enough for any leptonic signature as happen in FFP scenario.
- The only way to probe FFP is a mono-jet signature
 [Where the Sidewalk Ends? ... Alves, Izaguirre, Wacker '11],
 which has been used in studies on compressed SUSY spectra, e.g.
 Dreiner, Kramer, Tattersall '12; Han, Kobakhidze, Liu, Saavedra, Wu'13; Han, Kribs, Martin, Menon '14

- HB/FP parameter space is challenging to probe at the LHC even if the mass gap between gauginos is large enough to for leptonic signatures
 [Baer, AB, Krupovnickas, O'Farrill '04].
- The most challenging case takes place when only $\chi^0_{1,2}$ and χ^{\pm} are accessible at the LHC, and the mass gap between them is not enough for any leptonic signature as happen in FFP scenario.
- The only way to probe FFP is a mono-jet signature
 [Where the Sidewalk Ends? ... Alves, Izaguirre, Wacker '11],
 which has been used in studies on compressed SUSY spectra, e.g.
 Dreiner, Kramer, Tattersall '12; Han, Kobakhidze, Liu, Saavedra, Wu'13; Han, Kribs, Martin, Menon '14

- HB/FP parameter space is challenging to probe at the LHC even if the mass gap between gauginos is large enough to for leptonic signatures
 [Baer, AB, Krupovnickas, O'Farrill '04].
- The most challenging case takes place when only $\chi^0_{1,2}$ and χ^{\pm} are accessible at the LHC, and the mass gap between them is not enough for any leptonic signature as happen in FFP scenario.
- The only way to probe FFP is a mono-jet signature
 [Where the Sidewalk Ends? ... Alves, Izaguirre,Wacker '11],
 which has been used in studies on compressed SUSY spectra, e.g.
 Dreiner,Kramer,Tattersall '12; Han,Kobakhidze,Liu,Saavedra,Wu'13; Han,Kribs,Martin,Menon '14

- HB/FP parameter space is challenging to probe at the LHC even if the mass gap between gauginos is large enough to for leptonic signatures
 [Baer, AB, Krupovnickas, O'Farrill '04].
- The most challenging case takes place when only $\chi^0_{1,2}$ and χ^{\pm} are accessible at the LHC, and the mass gap between them is not enough for any leptonic signature as happen in FFP scenario.
- The only way to probe FFP is a mono-jet signature
 [Where the Sidewalk Ends? ... Alves, Izaguirre,Wacker '11],
 which has been used in studies on compressed SUSY spectra, e.g.
 Dreiner,Kramer,Tattersall '12; Han,Kobakhidze,Liu,Saavedra,Wu'13; Han,Kribs,Martin,Menon '14

Spectrum and Decays in FFP

in the limit $|\mu| \ll |M1|, \; |M2|$ we find

$$\begin{split} m_{\tilde{\chi}_{1,2}^{0}} &\simeq & \mp \left[|\mu| \mp \frac{m_{Z}^{2}}{2} (1 \pm s_{2\beta}) \left(\frac{s_{W}^{2}}{M_{1}} + \frac{c_{W}^{2}}{M_{2}} \right) \right] \\ m_{\tilde{\chi}_{1}^{\pm}} &\simeq & |\mu| \left(1 + \frac{\alpha(m_{Z})}{\pi} \left(2 + \ln \frac{m_{Z}^{2}}{\mu^{2}} \right) \right) - s_{2\beta} \frac{m_{W}^{2}}{M_{2}} \end{split} \qquad \Delta m_{\sigma} &= & m_{\tilde{\chi}_{1}^{0}} - m_{\tilde{\chi}_{1}^{0}} \simeq m_{Z}^{2} \left(\frac{s_{W}^{2}}{M_{1}} + \frac{c_{W}^{2}}{M_{2}} \right) \\ \Delta m_{\pm} &= & m_{\tilde{\chi}_{1}^{\pm}} - m_{\tilde{\chi}_{1}^{0}} \simeq \frac{\Delta m}{2} + \mu \frac{\alpha(m_{Z})}{\pi} \left(2 + \ln \frac{m_{Z}^{2}}{\mu^{2}} \right) \right) \\ \Gamma(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{2}^{0} \to f f' \tilde{\chi}_{1}^{0}) &= \frac{C^{4}}{120\pi^{3}} \frac{\Delta m^{5}}{\Lambda^{4}} \\ C^{4} &\simeq \frac{1}{4} \frac{g^{4}}{c_{W}^{4}} (s_{w}^{2} - 1/2)^{2} \\ L &= c\tau \simeq 0.01 \text{ cm} \left(\frac{\Delta m}{1 \text{ GeV}} \right)^{-5} \tilde{\chi}_{1}^{\pm} \to f f' \tilde{\chi}_{1}^{0} \\ L &= c\tau \simeq 0.006 \text{ cm} \left(\frac{\Delta m}{1 \text{ GeV}} \right)^{-5} \frac{\tilde{\chi}_{1}^{\pm} \to f f' \tilde{\chi}_{1}^{0}}{(W \text{-exchange})} \\ for \Delta m < 1 \text{ GeV one expect to start seeing displaced vertices ~ 0.1 \text{ mm}} \end{split}$$

LHC&DM search interplay in unravelling Natural SUSY

Dark Matter: Relic Density

Dark Matter: Relic Density

NEXT

LHC&DM search interplay in unravelling Natural SUSY

Dark Matter: Direct Detection

NEXT

Dark Matter: Direct Detection

Alexander Belyaev

LHC sensitivity to FFP through the pp $\rightarrow \chi\chi j$: $\chi = \chi^{0}_{1,2}$, χ^{\pm}_{1} process

LHC sensitivity to FFP through the pp $\rightarrow \chi\chi j$: $\chi = \chi_{1,2}^{0}$, χ_{1}^{\pm} process

NEXT

Analysis Setup

- MSSM
- SPHENO for mass spectrum, cross checked with
- ISAJET
- MadGraph for parton level simulations, cross checked with CalcHEP
- PYTHIA6 for hadronization and parton-showering
- Delphes3 for fast detector simulation
- CTEQ6L1 PDF

Main backgrounds for p_{T} jet + high MET signature

- Irreducible Z +jet $\rightarrow vv$ +jet (Zj)
- Reducible W +jet $\rightarrow \ell v$ + jet (Wj) when ℓ is missed

Signal vs Background analysis

difference in rates is quite pessimistic ...

pp→ννj vs. pp→χχj

Signal vs Background analysis

but the difference in shapes is quite encouraging!

pp->vvj vs. pp->χχj

Parton vs Detector simulation level

• the lack of the perfect $p_{\rm T}{}^{j1}$ vs MET correlations leads to a visible difference of the S/B ratio and significance, and should be taken into account.

S/B vs

Signal significance

	$Z(\nu\bar{\nu})j$	$W(\ell\nu)j$	$\mu=93~{\rm GeV}$	$\mu = 500 \; {\rm GeV}$
$p_{jet}^T > 50 \text{ GeV}, \eta_{jet} < 5$	6.4 E+7	2.9 E+8	2.6 E+5	948
Veto $p_{e^{\pm},\mu^{\pm}/\tau^{\pm}}^{T} > 10/20 \text{ GeV}$	6.2 E+7	1.2 E+8	2.5 E+5	921
$p_j^T > 500 \text{ GeV}$	2.5 E+4	2.0 E+4	1051	32
$p_j^T = E_T > 500 \text{ GeV}$	1.5 E+4	4.1 E+3	747	27
$p_j^T = \not E_T > 1000 \text{ GeV}$	315 (375)	65 (32)	21 (31)	2 (2)
$p_j^T = \not E_T > 1500 \text{ GeV}$	18 (20)	2 (1)	1 (2)	0 (0)
$p_j^T = E_T > 2000 \text{ GeV}$	1 (1)	0 (0)	0(1)	0 (0)

- There is an important tension between S/B and signal significance
- S/B pushes E_t^{miss} cut up towards an acceptable systematic
- significance requires comparatively low (below 500 GeV) E_t^{miss} cut

What is the minimal S/B is accessible?

ATLAS and CMS LHC@8 collaborations studied the related systematic error

sources of systematic uncertainty and their contributions (in %) to the total uncertainty on the Z(vv) background from CMS PAS EXO-12-048

$E_{\rm T}^{\rm miss}$ (GeV)	> 250	> 300	> 350	>400	> 450	> 500	> 550
Statistics (N ^{obs})	1.7	2.6	3.9	5.6	7.6	10.9	14.6
Background (N ^{bgd})	0.8	0.6	0.8	0.2	0.0	0.0	0.0
Acceptance (A)	2.0	2.0	2.0	2.1	2.1	2.2	2.4
Selection efficiency (ϵ)	2.0	2.0	2.1	2.2	2.4	2.7	3.1
Total	4.5	4.9	5.8	7.1	8.9	12.1	15.6

What is the minimal S/B is accessible?

ATLAS and CMS LHC@8 collaborations studied the related systematic error

sources of systematic uncertainty and their contributions (in %) to the total uncertainty on the Z(vv) background from CMS PAS EXO-12-048

$E_{\rm T}^{\rm miss}$ (GeV)	> 250	> 300	> 350	>400	> 450	> 500	> 550
Statistics (N ^{obs})	1.7	2.6	3.9	5.6	7.6	10.9	14.6
Background (N ^{bgd})	0.8	0.6	0.8	0.2	0.0	0.0	0.0
Acceptance (A)	2.0	2.0	2.0	2.1	2.1	2.2	2.4
Selection efficiency (ϵ)	2.0	2.0	2.1	2.2	2.4	2.7	3.1
Total	4.5	4.9	5.8	7.1	8.9	12.1	15.6

What is the minimal S/B is accessible?

 ATLAS and CMS LHC@8 collaborations studied the related systematic error

sources of systematic uncertainty and their contributions (in %) to the total uncertainty on the Z(vv) background from CMS PAS EXO-12-048

$E_{\rm T}^{\rm miss}$ (GeV)	> 250	> 300	> 350	>400	> 450	> 500	> 550
Statistics (N ^{obs})	1.7	2.6	3.9	5.6	7.6	10.9	14.6
Background (N ^{bgd})	0.8	0.6	0.8	0.2	0.0	0.0	0.0
Acceptance (A)	2.0	2.0	2.0	2.1	2.1	2.2	2.4
Selection efficiency (ϵ)	2.0	2.0	2.1	2.2	2.4	2.7	3.1
Total	4.5	4.9	5.8	7.1	8.9	12.1	15.6

 So, the realistic (or even optimistic!) S/B one should be looking at is ~ 5% or more

Interpreting LHC@8TeV results (CMS EXO-12-048)

Alexander Belyaev

LHC&DM search interplay in unravelling Natural SUSY

LHC@13 TeV potential to probe the FFP

• exclusion is limited to about 120 (130) GeV at 95%CL at 1.5 (3) ab⁻¹

 In case of S/B ratio at the 5% level, we could be able to claim a discovery up to 110 GeV LSP with 3 ab⁻¹

Dark Matter Direct detection complementary

- \bullet LUX and XENON1T are sensitive to the upper end of FFP of χ mass range starting from about 320 GeV
- making the very optimistic assumption that S/B \simeq 3%, the sensitivity of the LHC could extend up to 200 GeV LSP mass
- mass gap between 200 GeV and 320 GeV is problematic even for the combination of the LHC13TeV and XENON1T experiment and requires further attention

Discussion

- Similar studies done in parallel:
 - Han,Kobakhidze,Liu,Saavedra,Wu,Yang '13 : "FFP can be probed up to 200 GeV at 5 sigma level with 1.5 ab⁻¹" but S/B < 1% for 200 GeV LSP – not quite realistic to probe

 - Baer, Mustafayev, Tata '14 :

"FFP can not be probed at the LHC, since S/B ~ 1%" may be bit too conservative, since S/B can be improved with high P_{τ} cuts, this however requires high luminosity to keep statistics up

Han,Kribs,Martin,Menon '14

interpreted LHC@8TeV results, found sensitivity up to 70-90 GeV study was done at the parton level, while at the detector level we have found that both S/B and significance are too low for LHC@8TeV to be sensitive to FFP

- How important is the jet matching for this study?
 - we have performed simulation starting from the hard P_{T}^{j} cut (500 GeV) to gain as much statistics as possible
 - we have checked that matching (up to the 3 jet) does not have visible effect (available in the backup slides)

Conclusions

- FFP with light Higgsinos is not excluded (!)
 so far we have ~ 100 GeV limit from LEP, so it is very important not to miss this scenario
- We have shown that in reality LHC@13 has potential to probe light Higgsinos up to about 130 GeV if S/B ~ 5% (or better) control is possible
- DDM search experiments LUX and XENON1T are very complementary (from about 320 GeV)
- Mass gap 130-320 GeV requires a further attention

Thank You!

Matching vs non-Matching Marc Thomas

pT Leading Jet

Matching vs non-Matching Marc Thomas

2nd jet Pt

Matching vs non-Matching

Marc Thomas

3rd jet Pt

