Chaotic Inflation and Fractional Powers The Dynamical Origin of the Inflaton Potential in Chaotic Inflation

Kai Schmitz

Kavli Institute for the Physics and Mathematics of the Universe (WPI) Todai Institutes for Advanced Study, University of Tokyo, Kashiwa, Japan

Based on arXiv:1211.6241, 1403.4536, 1407.3084 [hep-ph]. In collaboration with Keisuke Harigaya, Masahiro Ibe and T. T. Yanagida.

SUSY 2014 | University of Manchester, UK | July 21, 2014

- A Fractional Power-Law Potential for Chaotic Inflation
- 2 Explicit Realizations in Models of Dynamical SUSY Breaking
- 3 Embedding into Supergravity and Phenomenology
- 4 Conclusions and Outlook

Outline

1 A Fractional Power-Law Potential for Chaotic Inflation

- Explicit Realizations in Models of Dynamical SUSY Breaking
- 3 Embedding into Supergravity and Phenomenology
- 4 Conclusions and Outlook

The Case for Dynamical Chaotic Inflation (DCI)

Assume BICEP2 claim survives further scrutiny:

► Large field excursion. → Chaotic inflation based on a simple monomial potential.

$$V(\phi) \sim M^4 \left(rac{|\phi|}{M}
ight)^{
ho}, \hspace{0.2cm}
ho \in \mathbb{Q}^+,$$

• Perturbative QFT: Only $p \in \mathbb{N}^+$ feasible.

The Case for Dynamical Chaotic Inflation (DCI)

Assume BICEP2 claim survives further scrutiny:

► Large field excursion. → Chaotic inflation based on a simple monomial potential.

$$V(\phi) \sim M^4 \left(rac{|\phi|}{M}
ight)^{
ho}, \quad
ho \in \mathbb{Q}^+,$$

• Perturbative QFT: Only $p \in \mathbb{N}^+$ feasible.

Why such a potential? What determines the power p and the mass scale M?

Axion monodromy in string theory: [Silverstein & Westphal '08] [McAllister, Silverstein & Westphal '08]

$$p = \frac{2}{5}, \frac{2}{3}, 1, 2.$$

Fractional powers from first principles!

► Embedding into SUGRA for p ∈ N⁺: [Kawasaki, Yamaguchi & Yanagida '00] [Kallosh & Linde '10]

$$W = X f(\Phi), \quad \Phi \to \Phi + i\alpha.$$

Only educated guesses of W and K.

Generate fractional power-law potential for chaotic inflation dynamically within field theory!

Theoretical ingredients: [Seiberg '94] [Intriligator & Pouliot '95] [Csaki, Schmaltz & Skiba '97]

- **1** Supersymmetry: Otherwise no control over IR dynamics, quadratic divergences, ...
- 2 Dynamical SUSY breaking (DSB): Vacuum energy $V(\phi)$ acts as inflaton potential.
- **3** S-confinement: Smooth effective field theory in terms of composites at low energies.

Theoretical ingredients: [Seiberg '94] [Intriligator & Pouliot '95] [Csaki, Schmaltz & Skiba '97]

- **1** Supersymmetry: Otherwise no control over IR dynamics, quadratic divergences, ...
- 2 Dynamical SUSY breaking (DSB): Vacuum energy $V(\phi)$ acts as inflaton potential.
- **3** S-confinement: Smooth effective field theory in terms of composites at low energies.

Dynamical generation of the inflaton potential (in words):

In a given DSB model, provide some quark flavors with inflaton-dependent mass:

$$W \supset (\lambda \Phi + M_a) P^a \bar{P}^a, \quad M_a \ge 0.$$

For $\lambda \Phi \gtrsim \Lambda$, these quark flavors decouple perturbatively, so that at low energies:

$$\Lambda_{\rm eff} = \Lambda \left(\frac{\lambda \Phi}{\Lambda}\right)^{p/4} \,, \quad \frac{p}{4} = \frac{b_{\rm eff} - b}{b_{\rm eff}} \quad \Rightarrow \quad W_{\rm eff} \simeq \Lambda_{\rm eff}^2 X \,, \quad V_{\rm eff} \simeq \Lambda^4 \left(\frac{\lambda \Phi}{\Lambda}\right)^p \,.$$

For $\lambda \Phi \lesssim \Lambda$, s-confined phase with all fields being stabilized around the origin:

$$V \simeq \Lambda^2 \left| \tilde{\phi} \right|^2, \quad \tilde{\phi} = f(\phi).$$

Fractional power *p*. \checkmark *M* identified as Λ . No input scale. \checkmark Smooth around $\Phi = 0$. \checkmark

Example: p = 3/2 [based on SP(3) theory]

RGE matching at quark mass threshold:

$$\begin{split} &\alpha_{\rm HE}^{-1} = \frac{b}{2\pi} \ln \left(\frac{\mu}{\Lambda} \right), \; \alpha_{\rm LE}^{-1} = \frac{b_{\rm eff}}{2\pi} \ln \left(\frac{\mu}{\Lambda_{\rm eff}} \right), \\ &\Lambda_{\rm eff} \simeq \Lambda \left(\frac{\lambda \Phi}{\Lambda} \right)^{p/4} V_{\rm eff} \simeq \Lambda_{\rm eff}^4, \; H_0 = \frac{\Lambda_{\rm eff}^4}{\sqrt{3}M_{\rm Pl}} \,. \end{split}$$

Example: p = 3/2 [based on SP(3) theory]

RGE matching at quark mass threshold:

$$\begin{split} &\alpha_{\rm HE}^{-1} = \frac{b}{2\pi} \ln \left(\frac{\mu}{\Lambda} \right), \; \alpha_{\rm LE}^{-1} = \frac{b_{\rm eff}}{2\pi} \ln \left(\frac{\mu}{\Lambda_{\rm eff}} \right), \\ &\Lambda_{\rm eff} \simeq \Lambda \left(\frac{\lambda \Phi}{\Lambda} \right)^{p/4} V_{\rm eff} \simeq \Lambda_{\rm eff}^4, \; H_0 = \frac{\Lambda_{\rm eff}^4}{\sqrt{3}M_{\rm Pl}} \,. \end{split}$$

Example: p = 3/2 [based on SP(3) theory]

RGE matching at quark mass threshold:

$$\begin{split} &\alpha_{\rm HE}^{-1} = \frac{b}{2\pi} \ln \left(\frac{\mu}{\Lambda}\right), \; \alpha_{\rm LE}^{-1} = \frac{b_{\rm eff}}{2\pi} \ln \left(\frac{\mu}{\Lambda_{\rm eff}}\right), \\ &\Lambda_{\rm eff} \simeq \Lambda \left(\frac{\lambda \Phi}{\Lambda}\right)^{\rho/4} V_{\rm eff} \simeq \Lambda_{\rm eff}^4, \; H_0 = \frac{\Lambda_{\rm eff}^4}{\sqrt{3}M_{\rm Pl}} \,. \end{split}$$

Example: p = 3/2 [based on SP(3) theory]

RGE matching at quark mass threshold:

$$\begin{split} &\alpha_{\rm HE}^{-1} = \frac{b}{2\pi} \ln \left(\frac{\mu}{\Lambda} \right), \; \alpha_{\rm LE}^{-1} = \frac{b_{\rm eff}}{2\pi} \ln \left(\frac{\mu}{\Lambda_{\rm eff}} \right), \\ &\Lambda_{\rm eff} \simeq \Lambda \left(\frac{\lambda \Phi}{\Lambda} \right)^{p/4} V_{\rm eff} \simeq \Lambda_{\rm eff}^4, \; H_0 = \frac{\Lambda_{\rm eff}^4}{\sqrt{3}M_{\rm Pl}} \,. \end{split}$$

Example: p = 3/2 [based on SP(3) theory]

RGE matching at quark mass threshold:

$$\begin{split} &\alpha_{\rm HE}^{-1} = \frac{b}{2\pi} \ln \left(\frac{\mu}{\Lambda}\right), \; \alpha_{\rm LE}^{-1} = \frac{b_{\rm eff}}{2\pi} \ln \left(\frac{\mu}{\Lambda_{\rm eff}}\right), \\ &\Lambda_{\rm eff} \simeq \Lambda \left(\frac{\lambda \Phi}{\Lambda}\right)^{\rho/4} V_{\rm eff} \simeq \Lambda_{\rm eff}^4, \; H_0 = \frac{\Lambda_{\rm eff}^4}{\sqrt{3}M_{\rm Pl}} \,. \end{split}$$

Example: p = 3/2 [based on SP(3) theory]

RGE matching at quark mass threshold:

$$\begin{split} &\alpha_{\rm HE}^{-1} = \frac{b}{2\pi} \ln \left(\frac{\mu}{\Lambda} \right), \; \alpha_{\rm LE}^{-1} = \frac{b_{\rm eff}}{2\pi} \ln \left(\frac{\mu}{\Lambda_{\rm eff}} \right), \\ &\Lambda_{\rm eff} \simeq \Lambda \left(\frac{\lambda \Phi}{\Lambda} \right)^{\rho/4} V_{\rm eff} \simeq \Lambda_{\rm eff}^4, \; H_0 = \frac{\Lambda_{\rm eff}^4}{\sqrt{3}M_{\rm Pl}} \,. \end{split}$$

Example: p = 3/2 [based on SP(3) theory]

RGE matching at quark mass threshold:

$$\begin{split} &\alpha_{\rm HE}^{-1} = \frac{b}{2\pi} \ln \left(\frac{\mu}{\Lambda} \right), \; \alpha_{\rm LE}^{-1} = \frac{b_{\rm eff}}{2\pi} \ln \left(\frac{\mu}{\Lambda_{\rm eff}} \right), \\ &\Lambda_{\rm eff} \simeq \Lambda \left(\frac{\lambda \Phi}{\Lambda} \right)^{\rho/4} V_{\rm eff} \simeq \Lambda_{\rm eff}^4, \; H_0 = \frac{\Lambda_{\rm eff}^4}{\sqrt{3}M_{\rm Pl}} \,. \end{split}$$

Example: p = 3/2 [based on SP(3) theory]

RGE matching at quark mass threshold:

$$\begin{split} &\alpha_{\rm HE}^{-1} = \frac{b}{2\pi} \ln \left(\frac{\mu}{\Lambda} \right), \; \alpha_{\rm LE}^{-1} = \frac{b_{\rm eff}}{2\pi} \ln \left(\frac{\mu}{\Lambda_{\rm eff}} \right), \\ &\Lambda_{\rm eff} \simeq \Lambda \left(\frac{\lambda \Phi}{\Lambda} \right)^{\rho/4} V_{\rm eff} \simeq \Lambda_{\rm eff}^4, \; H_0 = \frac{\Lambda_{\rm eff}^4}{\sqrt{3}M_{\rm Pl}} \,. \end{split}$$

Outline

A Fractional Power-Law Potential for Chaotic Inflation

2 Explicit Realizations in Models of Dynamical SUSY Breaking

3 Embedding into Supergravity and Phenomenology

4 Conclusions and Outlook

Minimal Scenario: $SP(N_c)$ Dynamics

Recall ingredient **2**: DSB responsible for $V(\phi) \simeq \Lambda_{\text{eff}}^4$ during inflation.

- ▶ Need DSB model that flows to s-confining theory when $\phi \rightarrow 0$.
- Or alternatively: s-confining theory flowing to DSB model when $\phi \gg \Lambda$.

Minimal Scenario: $SP(N_c)$ Dynamics

Recall ingredient **2**: DSB responsible for $V(\phi) \simeq \Lambda_{\text{eff}}^4$ during inflation.

- ▶ Need DSB model that flows to s-confining theory when $\phi \rightarrow 0$.
- Or alternatively: s-confining theory flowing to DSB model when $\phi \gg \Lambda$.

Simplest example: $SP(N_c)$ gauge theory with $2N_f$ quarks and $N_f = N_c + 2$.

For every flat direction in moduli space, introduce one singlet field Z_{lJ} :

$$W = \lambda_{IJ} Z_{IJ} Q^I Q^J \quad \rightarrow \quad W = \lambda_{ij} Z_{ij} Q^j Q^j + \lambda \Phi P \overline{P} + \dots$$

- Identify one of the singlets as inflaton field Φ , e.g. because $[\Phi]_R = 0$.
- For $\lambda \Phi \lesssim \Lambda$, s-confined phase, dynamical superpotential, SUSY vacuum at origin.
- For $\lambda \Phi \gtrsim \Lambda$, (P, \overline{P}) flavor decouples, deformed moduli constraint, SUSY broken [Izawa & Yanagida '96] [Intriligator & Thomas '96]

$$W \simeq \lambda_{ij} \Lambda_{\rm eff} Z_{ij} M^{ij}$$
, ${
m Pf}(M) = \Lambda_{\rm eff}^{N_c+1}$, $M^{ij} \simeq Q^j Q^j / \Lambda_{\rm eff}$, $\Lambda_{\rm eff} \simeq \Lambda \left(\frac{\lambda \Phi}{\Lambda} \right)^{p/4}$

Minimize potential with respect to meson fields $M^{ij} \rightarrow$ low-energy effective theory:

 $W_{\mathrm{eff}} \simeq \Lambda_{\mathrm{eff}} X$, $X \propto \sum Z_{ij}$ $V_{\mathrm{eff}}(\phi) \simeq (N_c + 1) \Lambda_{\mathrm{eff}}^4(\phi)$, $\rho = \frac{4(b_{\mathrm{eff}} - b)}{b_{\mathrm{eff}}} = \frac{1}{2N_c + 1}$

Generalization along Two Different Directions

- **1** Additional massive matter fields that decouple at energies $\mu \gtrsim \Lambda$.
- 2 Vacuum energy provided by alternative models of dynamical SUSY breaking.

Generalization along Two Different Directions

- **1** Additional massive matter fields that decouple at energies $\mu \gtrsim \Lambda$.
- 2 Vacuum energy provided by alternative models of dynamical SUSY breaking.
- For example, $SP(N_c)$ gauge theory with $2N_f$ quarks and $N_f = N_c + 2 + N_m$.
 - > To retain s-confinement, all extra flavors must decouple above the dynamical scale,

$$W \supset (\lambda \Phi + M_a) P^a \overline{P}^a, \quad a = 1, .., N_m, \quad \mathcal{O}(\Lambda) \lesssim M_a \lesssim \mathcal{O}(M_{\text{Pl}}).$$

Extra contribution to the high-energy beta-function coeffcient changes the power p,

$$b = 3(N_c + 1) - (N_c + 2 + N_m), \quad b_{\text{eff}} = 3(N_c + 1) - (N_c + 1), \quad p = \frac{2(1 + N_m)}{N_c + 1}.$$

Generalization along Two Different Directions

- 1 Additional massive matter fields that decouple at energies $\mu \gtrsim \Lambda$.
- 2 Vacuum energy provided by alternative models of dynamical SUSY breaking.
- For example, $SP(N_c)$ gauge theory with $2N_f$ quarks and $N_f = N_c + 2 + N_m$.
 - To retain s-confinement, all extra flavors must decouple above the dynamical scale,

$$W \supset (\lambda \Phi + M_a) P^a \overline{P}^a, \quad a = 1, .., N_m, \quad \mathcal{O}(\Lambda) \lesssim M_a \lesssim \mathcal{O}(M_{\mathrm{Pl}}).$$

Extra contribution to the high-energy beta-function coeffcient changes the power p,

$$b = 3(N_c + 1) - (N_c + 2 + N_m), \quad b_{eff} = 3(N_c + 1) - (N_c + 1), \quad p = \frac{2(1 + N_m)}{N_c + 1}$$

e Seek alternative s-confining theories that can be transformed into DSB models:

Gauge group	S-confining phase	SUSY-breaking phase	Power p	
SP(N _c)	$Q^i, i = 1,, 2(N_c + 2)$	$Q^{i}, i = 1,, 2(N_{c} + 1)$	$2/(N_c+1)$	
<i>SO</i> (10)	$\bm{16}_{0,1}, \overline{\bm{16}}_{1}, \bm{10}_{1,2,3}$	16 0	14/11	
<i>SU</i> (5)	5 _{1,,4} , 5 _{0,,4} , 10	5 ₀ *, 10	16/13	
SU(3) imes SU(2)	$q, \overline{u}, \overline{d}, \ell, U, \overline{U}, D, \overline{D}, L, \overline{L}$	$q, \overline{u}, \overline{d}, \ell$	8/7	
$SU(N_c)$	$Q^{i}, \bar{Q}^{i}, i = 1,, N_{c} + 1$	$Q^i, ar Q^i, i=1,,N_c$	1	

[Izawa & Yanagida '96] [Intriligator & Thomas '96] [Affleck, Dine & Seiberg '84] [Affleck, Dine & Seiberg '85] [Seiberg '85]

Outline

- 1 A Fractional Power-Law Potential for Chaotic Inflation
- 2 Explicit Realizations in Models of Dynamical SUSY Breaking
- 3 Embedding into Supergravity and Phenomenology
- 4 Conclusions and Outlook

Constraints on Parameter Space

 $V \simeq \Lambda^4 \left(\frac{\lambda \Phi}{\Lambda}\right)^{\rho} \rightarrow \text{ two parameters: dynamical scale } \Lambda \text{ and inflaton Yukawa coupling } \lambda.$

Eta problem in supergravity:

- Too large η because of e^{K} corrections.
- Shift symmetry in the direction of Φ:

 $\Phi
ightarrow \Phi + \mathit{icM}_{Pl}\,, \ \ \mathit{c} \in \mathbb{R}.$

- $\tau \equiv \sqrt{2} \operatorname{Im} \{ \Phi \}$ is the actual inflaton.
- Shift symmetry explicitly broken in the Kähler potential at one-loop level:

$$\mathcal{K}_{\mathrm{eff}} \supset rac{\lambda^2}{16\pi^2} \left|\Phi\right|^2 \ln\left(rac{\mu^2}{M_{\mathrm{Pl}}^2}
ight).$$

• Coupling λ must be small, $\lambda \lesssim 0.1$.

Origin of the shift symmetry needs to be addressed / explained in UV completion.

Constraints on Parameter Space

 $V \simeq \Lambda^4 \left(\frac{\lambda \Phi}{\Lambda}\right)^{\rho} \rightarrow \text{ two parameters: dynamical scale } \Lambda \text{ and inflaton Yukawa coupling } \lambda.$

Eta problem in supergravity:

- Too large η because of e^{K} corrections.
- Shift symmetry in the direction of Φ:

 $\Phi
ightarrow \Phi + i \, c \, M_{
m Pl} \,, \quad c \in \mathbb{R}.$

- $\tau \equiv \sqrt{2} \operatorname{Im} \{ \Phi \}$ is the actual inflaton.
- Shift symmetry explicitly broken in the Kähler potential at one-loop level:

$$\mathcal{K}_{\mathrm{eff}} \supset rac{\lambda^2}{16\pi^2} \left|\Phi\right|^2 \ln\left(rac{\mu^2}{M_{\mathrm{Pl}}^2}
ight).$$

• Coupling λ must be small, $\lambda \lesssim 0.1$.

Origin of the shift symmetry needs to be addressed / explained in UV completion.

$$\Lambda \sim \Lambda_{GUT}, ~ \checkmark ~ \lambda \sim 10^{-3}..\,10^{-1} \,. ~ \checkmark$$

Normalization of the power spectrum and bounds imposed for consistency:

$$A_{s} \equiv A_{s}^{\rm obs}, \quad \Lambda \lesssim \lambda \tau \lesssim M_{\rm Pl}.$$

Outline

- A Fractional Power-Law Potential for Chaotic Inflation
- 2 Explicit Realizations in Models of Dynamical SUSY Breaking
- 3 Embedding into Supergravity and Phenomenology
- 4 Conclusions and Outlook

DCI: Viable and Simple Large-Field Model in Field Theory

Precise determination of p would allow to

Virtues of dynamical chaotic inflation:

- Conformally invariant at the classical level in its simplest form (no input M_a).
- Energy scale of inflation generated via dimensional transmutation; thus, natural reason why V^{1/4}

 M_{Pl}.
- Fractional power-law in field theory!

DCI: Viable and Simple Large-Field Model in Field Theory

Precise determination of *p* would allow to identify the dynamics of the inflaton sector!

Virtues of dynamical chaotic inflation:

- Conformally invariant at the classical level in its simplest form (no input M_a).
- Energy scale of inflation generated via dimensional transmutation; thus, natural reason why V^{1/4}

 M_{Pl}.
- Fractional power-law in field theory!

Next steps towards a theory of DCI:

- Conformal window or DSB as alternatives to s-confinement.
- DSB during inflation in meta-stable vacuum or in the conformal window.
 [Intriligator, Seiberg & Shih '06] [Yanagida et al. '09]
- Embed DCI into string theory / explain origin of the shift symmetry for Φ.

Fascinating picture: Inflation as a mere consequence of strong supersymmetric gauge dynamics shortly below the Planck scale! Calls for further exploration!

Kai Schmitz (Kavli IPMU, U Tokyo)

Thank you for your attention!

Supplementary Material

Supplementary Material

Currently Most Attractive Models: Chaotic Inflation

Fractional power-law potential:

 Axion monodromy in string theory. [Silverstein & Westphal '08]

$$V(\phi) \propto \phi^{2/3}, \ \phi^{2/5}$$

 Strong gauge dynamics in field theory. [Harigaya, Ibe, K.S. & Yanagdida '13]

$$V(\phi) \propto \phi^{2/(N_c+1)}, \quad G = Sp(N_c)$$

 Will be probed this year by PLANCK polarization data.

Re-analysed PLANCK data corrected for systematics in the 217 GHz map:

Common features of Starobinsky & chaotic Inflation:

- ► Large-field models of inflation. ⇒ Very sensitive to higher-dim. SUGRA corrections.
- Particular value of n_s singled out due to particularly shaped scalar potential.

Hybrid inflation is a small-field model, in which n_s is a priori undetermined!

Kai Schmitz (Kavli IPMU, U Tokyo)