Moduli Identification in Heterotic Compactifications

James Gray, Virginia Tech

Based on work with: Lara Anderson and Eric Sharpe

1402.1532

and Lara Anderson, Andre Lukas and Burt Ovrut 1304.2704

1107.5076

1010.0255

See also Xenia de la Ossa and Eirik Svanes 1402.1725

Warm up: Bundles on Calabi-Yau

 The moduli space of a Calabi-Yau compactification in the presence of a gauge bundle is *not* described in terms of

$$H^1(\mathcal{TX}) \oplus H^1(\mathcal{TX}^{ee}) \oplus H^1(\mathrm{End}^0(\mathcal{V}))$$

- It is described in terms of a subspace of these cohomology groups determined by the kernel of certain maps
- —Those maps are determined by the supergravity data of the solution.
- To see this we can analyze the supersymmetry conditions.

 The conditions for the gauge field to be supersymmetric are the Hermitian Yang-Mills equations at zero slope:

$$F_{ab} = F_{\overline{a}\overline{b}} = 0 \qquad g^{ab}F_{a\overline{b}} = 0$$

Study perturbations obeying these equations:

Perturb the complex structure: $\mathcal{J}=\mathcal{J}^{(0)}+\delta\mathcal{J}$

$$\mathcal{J}^2 = -1
N(\mathcal{J}) = 0 \qquad \delta \mathcal{J}_{\overline{a}}^b \in H^1(TX)$$

and the gauge field: $A=A^{(0)}+\delta A$

Define

$$\overline{P}_I^J = \frac{1}{2}(1+i\mathcal{J})_I^J$$

and rewrite our equation in a more usable form

$$F_{\overline{a}\overline{b}} = 0 \quad \Rightarrow \quad \overline{P}_{I}^{I'} \overline{P}_{J}^{J'} F_{I'J'} = 0$$

 And work out the perturbed equation to first order:

$$i\delta \mathcal{J}_{[\overline{a}}^{\ d}F_{\overline{b}]d} = 2D_{[\overline{a}}\delta A_{\overline{b}]}$$

This equation is not of much practical use...

The Atiyah class:

 There is a description of this in terms of cohomology of a certain bundle:

Define:
$$0 \to \operatorname{End}^0(\mathcal{V}) \to \mathcal{Q} \to \mathcal{T}\mathcal{X} \to 0$$

Atiyah states that the moduli are not

$$H^1(\mathcal{TX})\oplus H^1(\mathrm{End}^0(\mathcal{V}))$$

But rather: $H^1(\mathcal{Q})$

How do we tie this in with our field theory analysis?

- Take $H^0(\mathcal{TX})$ to vanish for simplicity
- Look at the long exact sequence in cohomology

$$0 \to H^{1}(\operatorname{End}^{0}(V)) \to H^{1}(\mathcal{Q})$$
$$\to H^{1}(\mathcal{TX}) \xrightarrow{\alpha} H^{2}(\operatorname{End}^{0}(V))$$

where $\alpha = [F]$

Thus we see Atiyah claims the moduli are given by

$$H^{1}(\mathcal{Q}) = \begin{cases} H^{1}(\operatorname{End}^{0}(\mathcal{V})) \\ \oplus \\ \ker(H^{1}(\mathcal{TX}) \to H^{2}(\operatorname{End}^{0}(\mathcal{V})) \end{cases}$$

Non-Kähler Compactifications

Hull, Strominger

- The most general $\mathcal{N}=1$ heterotic compactification with maximally symmetric 4d space:
 - Complex manifold

$$F_{ab} = F_{\overline{a}\overline{b}} = 0 \quad H = i/2(\overline{\partial} - \partial)J$$
$$dH = -\frac{1}{30}\alpha' \text{tr} F \wedge F + \alpha' \text{tr} R \wedge R$$

$$g^{a\overline{b}}F_{a\overline{b}} = 0 \qquad H_{\overline{b}c\overline{a}}g^{\overline{b}c} = -6\overline{\partial}_{\overline{a}}\phi$$

Gillard, Papadopoulos and Tsimpis

Non-Kähler Compactifications

Hull, Strominger

- The most general $\mathcal{N}=1$ heterotic compactification with maximally symmetric 4d space:
 - Complex manifold

$$F_{ab} = F_{\overline{a}\overline{b}} = 0 \qquad H = i/2(\overline{\partial} - \partial)J$$

$$dH = -\frac{1}{30}\alpha' \text{tr} F \wedge F + \alpha' \text{tr} R \wedge R$$

$$g^{a\overline{b}}F_{a\overline{b}} = 0 \qquad H_{\overline{b}c\overline{a}}g^{\overline{b}c} = -6\overline{\partial}_{\overline{a}}\phi$$

Gillard, Papadopoulos and Tsimpis

Non-Kähler Compactifications

Hull, Strominger

- The most general $\mathcal{N}=1$ heterotic compactification with maximally symmetric 4d space:
 - Complex manifold

$$F_{ab} = F_{\overline{a}\overline{b}} = 0 \quad H = i/2(\overline{\partial} - \partial)J$$
$$dH = -\frac{1}{30}\alpha' \text{tr} F \wedge F + \alpha' \text{tr} R \wedge R$$

$$g^{a\overline{b}}F_{a\overline{b}} = 0$$
 $H_{\overline{b}c\overline{a}}g^{\overline{b}c} = -6\overline{\partial}_{\overline{a}}\phi$

Gillard, Papadopoulos and Tsimpis

 Perturb all of the fields just as we did in the Calabi-Yau case:

$$\mathcal{J} = \mathcal{J}^{(0)} + \delta \mathcal{J} \quad A = A^{(0)} + \delta A$$
$$J = J^{(0)} + \delta J$$
$$H = H^{(0)} + \delta H^{\text{closed}} - \frac{1}{30} \alpha' \delta \omega_3^{\text{YM}} + \alpha' \delta \omega_3^{\text{L}}$$

 And look at what the first order perturbation to the supersymmetry relations looks like...

In what follows I con<u>si</u>der manifolds obeying the $\partial\partial$ -lemma

Lemma: Let X be a compact Kähler manifold. For A a d-closed (p,q) form, the following statements are equivalent.

$$A = \overline{\partial}C \Leftrightarrow A = \partial C' \Leftrightarrow A = dC''$$

$$\Leftrightarrow A = \partial \overline{\partial}\tilde{C} \Leftrightarrow A = \partial \hat{C} + \overline{\partial}\tilde{C}$$

For some C, C', C'', \tilde{C} and \check{C} .

- For the perturbation analysis the Atiyah computation goes through unchanged.
- The other equations are somewhat more messy:

Atiyah analysis:

$$i\delta \mathcal{J}_{[\overline{a}}^{\ d}F_{\overline{b}]d} = 2D_{[\overline{a}}\delta A_{\overline{b}]}$$

ullet Totally anti-holomorphic part of H eqn:

$$3\overline{\partial}_{[\bar{a}}\delta B_{\bar{b}\bar{c}]} - \frac{2}{10}\alpha'\left(\overline{\partial}_{[\bar{a}}\left(\delta A^{y}_{\bar{b}}A^{x}_{\bar{c}]}\delta_{xy}\right)\right) + 6\alpha'\left(\overline{\partial}_{[\bar{a}}\left(\delta W^{\alpha\beta}_{\bar{b}}W^{\beta\alpha}_{\bar{c}]}\right)\right) = -\frac{3}{2}i\overline{\partial}_{[\bar{a}}\delta J_{\bar{c}\bar{b}]}$$

$$\Rightarrow \delta B_{\bar{b}\bar{c}} = \frac{2}{30} \alpha' \left(\delta A^{y}_{[\bar{b}} A^{x}_{\bar{c}]} \delta_{xy} \right) - 2\alpha' \left(\delta W^{\alpha\beta}_{[\bar{b}} W^{\beta\alpha}_{\bar{c}]} \right) + \frac{i}{2} \delta J_{\bar{b}\bar{c}} + \delta B'_{\bar{b}\bar{c}}$$

Remaining components:

$$\begin{split} &2\overline{\partial}_{[\overline{a}}\delta B_{\overline{b}]c} + \partial_c \delta B_{\overline{a}\overline{b}} - \alpha' \frac{1}{30} \delta \omega_{3\overline{a}\overline{b}c}^{\mathrm{YM}} + \alpha' \delta \omega_{3\overline{a}\overline{b}c}^{\mathrm{L}} = i\overline{\partial}_{[\overline{a}}\delta J_{\overline{b}]c} - \delta J_{[\overline{a}}^{\ d}\partial J_{\overline{b}]cd} + \frac{1}{2} i\partial_c \delta J_{\overline{a}\overline{b}} \\ &\Rightarrow \delta J_{[\overline{a}}^{\ d}\partial J_{\overline{b}]cd} - \frac{4}{30} \alpha' \delta_{xy} \delta A_{[\overline{a}}^x F_{\overline{b}]c}^y + 4\alpha' \delta W_{[\overline{a}}^{\alpha\beta} R_{\overline{b}]c}^{\beta\alpha} = i\overline{\partial}_{[\overline{a}}\delta J_{\overline{b}]c} - 2\overline{\partial}_{[\overline{a}}\delta B_{\overline{b}]c} - \overline{\partial}_{[\overline{a}}\Lambda_{\overline{b}]c}^{\alpha'} \end{split}$$

- How do we interpret this result?
 - Proceed by analogy with the Atiyah case:

Define a bundle Q:

$$0 \to \operatorname{End}_0(\mathcal{V}) \oplus \operatorname{End}_0(\mathcal{TX}) \to \mathcal{Q} \to \mathcal{TX} \to 0$$

and a bundle \mathcal{H} :

$$0 \to \mathcal{TX}^{\vee} \to \mathcal{H} \to \mathcal{Q} \to 0$$

Baraglia and Hekmati 1308.5159

We claim the cohomology $H^1(\mathcal{H})$ precisely encapsulates the allowed deformations.

 To make contact with the field theory we again look at the associated long exact sequences in cohomology.

$$H^0(\mathcal{Q}) \to H^1(\mathcal{TX}^{\vee}) \to H^1(\mathcal{H})$$

 $\to H^1(\mathcal{Q}) \to H^2(\mathcal{TX}^{\vee})$

and

$$H^1(\operatorname{End}_0(\mathcal{V})) \oplus H^1(\operatorname{End}_0(\mathcal{TX})) \to H^1(\mathcal{Q})$$

$$\to H^1(\mathcal{TX}) \to H^2(\operatorname{End}_0(\mathcal{V})) \oplus H^2(\operatorname{End}_0(\mathcal{TX}))$$

Do the sequence chasing and you find...

$$H^{1}(\mathcal{H}) = \begin{cases} \ker\left(\ker\{H^{1}(TX) \overset{[F],[R]}{\longrightarrow} H^{2}(\operatorname{End}_{0}(V)) \oplus H^{2}(\operatorname{End}_{0}(TX))\right) \overset{M}{\longrightarrow} H^{2}(TX^{\vee}) \\ \oplus \\ \ker\left(H^{1}(\operatorname{End}_{0}(V)) \overset{-\frac{4}{30}\alpha'[F]}{\longrightarrow} H^{2}(TX^{\vee})\right) \oplus \ker\left(H^{1}(\operatorname{End}_{0}(TX)) \overset{4\alpha'[R]}{\longrightarrow} H^{2}(TX^{\vee})\right) \\ \oplus \\ H^{1}(TX^{\vee}) . \end{cases}$$

This is a subspace of

$$H^1(\mathcal{TX}^{\vee}) \oplus H^1(\mathcal{TX}) \oplus H^1(\mathrm{End}_0(\mathcal{V}))$$

 $\oplus H^1(\mathrm{End}_0(\mathcal{TX}))$

defined by maps determined by the supergravity data.

- All maps are well defined, as are the extensions.
- This precisely matches the supergravity computation.

A few comments on the structure:

- One can easily generalize to the case where $H^0(\mathcal{TX}) \neq 0$.
- The overall volume is only a modulus in the CY case.
- Unlike in the Atiyah story, the bundle moduli are constrained by the map structure here.
- Matter can be included in the analysis, simply by thinking of it as the moduli of an E8 bundle.
- There is a nice mathematical interpretation of all of this...
 Baraglia and Hekmati 1308.5159

Garcia-Fernandez 1304.4294

Conclusions

- For the case where a non-Kähler heterotic compactification obeys the $\partial \overline{\partial}$ -lemma:
 - The moduli are given by subgroups of the usual sheaf cohomology groups.
 - The subgroups of interest are determined by kernels and cokernels of maps determined by the supergravity data
 - This all has a nice mathematical interpretation in terms of Courant algebroids (transitive and exact) and generalized complex structures on the total space of certain bundles