F-theory on Spin(7) manifolds

Weak-coupling limit

Federico Bonetti

Max-Planck-Institut für Physik, Munich

SUSY2014, Manchester, July 21

[FB, T. Grimm, T. Pugh, arXiv:1307.5858] [FB, T. Grimm, E. Palti, T. Pugh, arXiv:1309.2287]

Outline

- Introduction
- Uplift of the effective action from three to four dimensions
- Weak-coupling limit
- Type IIB setups with five-planes
- Conclusions & outlook

Reminder: from M-theory to F-theory

- F-theory constructions extend Type IIB vacua beyond perturbation theory
- Rich phenomenology of 4d $\mathcal{N} = 1$ F-theory vacua
- The F-theory effective action is derived via duality with M-theory
- Relevant geometry: elliptically fibered Calabi-Yau fourfold

$T^2 \leftrightarrow V$	M-theory side	F-theory side
$\begin{array}{ccc} I & \hookrightarrow I_4 \\ & \downarrow \pi \end{array}$	$\mathbb{R}^{1,2} imes Y_4$	$\mathbb{R}^{1,2} \times B_3 \times S^1$
B_3	$\operatorname{vol}(T^2) \to 0$	$\operatorname{vol}(S^1) \to \infty$
	• 1	
$3d \mathcal{N} = 2$ M-theory effective action	uplift	$\begin{array}{l} \text{4d } \mathcal{N} = 1 \text{ F-theory} \\ \text{effective action} \end{array}$

F-theory and Spin(7) quotients

Can this construction be extended to Spin(7) geometries? [Vafa 96]

• We introduce an antiholomorphic quotient respecting the fibration structure

$$Y_{4} \xrightarrow{\sigma} Y_{4}$$

$$\pi \downarrow \qquad \sigma^{*}J = -J$$

$$Z_{8} = Y_{4}/\sigma$$

$$T_{B_{3}} \xrightarrow{\sigma_{B}} B_{3}$$

$$\sigma^{*}_{B}J_{B} = -J_{B}$$

> Grading of 3d moduli into σ -even and σ -odd

> Truncation of the M-theory effective action to 3d $\mathcal{N} = 1$

Task: perform the uplift to four dimensions

Uplifting on an interval

- A Majorana spinor in 4d yields two Majorana spinors upon circle reduction
- A 3d $\mathcal{N} = 1$ supergravity theory cannot come from circle reduction of a 4d theory
- The standard uplift of the M-theory action to the F-theory action is not possible

Proposal: uplift on the interval S^1/\mathbb{Z}_2

Heuristic picture from the antiholomorphic quotient

the orientation of the one of the two cycles is reflected turned into an interval

- > Allows to obtain 3d $\mathcal{N} = 1$ from four dimensions
- Evidence for an interval in the weak-coupling limit

Interval and boundary conditions

- Reduction on $\mathbb{R}^{1,2} imes S^1/\mathbb{Z}_2$ (circle coordinate $x^3 \sim x^3 + 2\pi R$)
- Boundary conditions have to be specified for each field

4d field	allowed boundary conditions	massless 3d field	
scalar	$\partial_3 \phi \big = 0$	scalar	
	$\phi \big = 0$	no massless field	
vector	$\partial_3 A_\mu \Big = 0 \& A_3 \Big = 0$	vector	
	$A_{\mu} = 0 \& \partial_3 A_3 = 0$	scalar	
Majorana spinor	$\frac{1}{2}(1-\gamma_3)\chi \Big = 0$		
	$\frac{1}{2}(1+\gamma_3)\chi = 0$	iviajorana spinor	

Dirichlet b.c. forbid constant non-zero profile: no massless degree of freedom in 3d

Ambiguities and minimal uplift

Ambiguities of the interval uplift

•

• F-theory data and symmetries fix the the uplift of spinors and vectors...

spinors and Cartan vectors in 3d		Lorentz symmetry gauge symmetry		<u> </u>	reconstruction of 4d couplings	
but we can add any 4d Dirichlet scalar in the uplift						
	Minimal uplift of 3d action S_3	=	4d Lorentz inva with minimal that yields S ₃ of	aria se [:] n si	nt action S ₄ t of fields mall interval	

• S_3 has $\mathcal{N} = 1$ supersymmetry in 3d $\longrightarrow S_4$ is non-supersymmetric

scalar sector \longrightarrow "real slice" in the Kähler moduli space of a 4d $\mathcal{N} = 1$ theory

Supersymmetry restoration

Does the minimal uplift capture all light degrees of freedom?

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- This question cannot be answered within supergravity
- In the F-theory limit some M2-brane states become light
- For a subclass of quotients complementary information comes from the analysis of the Type IIB weak-coupling limit

4d $\mathcal{N} = 1$ supersymmetry is restored in the infinite interval limit

• For any σ-odd Calabi-Yau modulus a Dirichlet scalar has to be included

σ-even scalar	σ-odd scalar
Neumann b.c.	Dirichlet b.c.
3d zeromodes + excited modes	3d excited modes only

• For infinite interval the 4d effective action is the Calabi-Yau effective action

Sen's limit and the Calabi-Yau threefold Y_3

• Recall Weierstrass form of the elliptic fibration

$$y^2 = x^3 + f(u) x z^4 + g(u) z^6$$

• Sen's parameterization [Sen 97]

$$f = C \eta - 3h^2$$

 $g = h(C \eta - 2h^2) + C^2 \chi$
 $h, \eta, \chi \equiv$ functions of base coordinates
 $C \equiv$ constant

- Engineered to have small coupling as $C \rightarrow 0$
- Resulting picture: orientifold of Type IIB on Calabi-Yau threefold Y₃
 - > Y_3 is the double cover of the base B_3
 - \succ conveniently described by an additional coordinate ξ

Calabi-Yau threefold
$$Y_3$$
 : $\xi^2 = h$

Two involutions on Y_3

• Orientifold of Type IIB on Y_3 : holomorphic involution (*u* : coord. on B_3)

$$\sigma_{\rm h}: Y_3 \to Y_3 \qquad (u,\xi) \mapsto (u,-\xi)$$

- Fixed locus of $\sigma_h \longrightarrow$ O7-plane located at $\xi = 0 \Leftrightarrow h = 0$
- $\sigma_B: B_3 \to B_3$ can be extended to Y_3 to give an antiholomorphic involution

$$\sigma_{\mathrm{ah}}: Y_3 \to Y_3 \qquad (u,\xi) \mapsto (\sigma_B(u), \overline{\xi})$$

Weak-coupling picture as Type IIB quotient

where

- $\Omega_p \equiv$ worldsheet orientation reversal
- $F_L \equiv$ left-moving spacetime fermion number
- $R_3 \equiv$ reflection in external spacetime $\mathbb{R}^{1,2} \times S^1$

 $(x^0, x^1, x^2, x^3) \mapsto (x^0, x^1, x^2, -x^3)$

Weak-coupling picture as Type IIB quotient

Weak-coupling pictureType IIB on $\mathbb{R}^{1,2} \times S^1 \times Y_3$ modded out by
the symmetry group generated by $\mathcal{O}_1 = \sigma_h \Omega_p (-1)^{F_L}$ $\mathcal{O}_2 = R_3 \sigma_{ah} (-1)^{F_L}$

Some comments:

- The S^1 factor is interpreted as the T-dual of the *B* cycle of the torus
- It grows macroscopically large in the F-theory limit
- The involution σ_{ah} induces a Pin-odd transformation on spinors
 - not a symmetry of chiral Type IIB!
- The reflection R_3 compensates $\sigma_{\rm ah}$ and induces the interval S^1/\mathbb{Z}_2

Weak-coupling picture as Type IIB quotient

Weak-coupling pictureType IIB on $\mathbb{R}^{1,2} \times S^1 \times Y_3$ modded out by
the symmetry group generated by $\mathcal{O}_1 = \sigma_{\mathrm{h}} \Omega_p (-1)^{F_L}$ $\mathcal{O}_2 = R_3 \sigma_{\mathrm{ah}} (-1)^{F_L}$

Some further comments:

- The factors $\Omega_p (-1)^{F_L}$ and $R_3 (-1)^{F_L}$ in \mathcal{O}_1 and \mathcal{O}_2 are deduced from M-theory to F-theory duality
- Trace back to Type IIA and then M-theory —> geometric reflections of A, B cycles
- Consistency with the action of $\sigma: Y_4 \to Y_4$ on the fiber

Weak-coupling setups with five-planes

- Assumptions:
 - real three-dimensional fixed locus on the base
 - real one-dimensional fixed line on the fiber

symmetry	localized object	on the interval		inside Y ₃ wraps
$\mathcal{O}_1 = \sigma_{\mathrm{h}} \Omega_p (-1)^{F_L}$	07	wrapping	\mathcal{H}_4	4-dim. holom. submanifold
$\mathcal{O}_2 = R_3 \sigma_{\rm ah} (-1)^{F_L}$	X5	localized at endpoints	\mathcal{L}_3	3-dim. special Lagrangian subm.
$\mathcal{O}_1 \mathcal{O}_2 = R_3 \sigma_{\mathrm{h}} \sigma_{\mathrm{ah}} \Omega_p$	O5	localized at endpoints	\mathcal{L}_3'	3-dim special Lagrangian subm.

- Lagrangian subm. are calibrated in a way compatible with the holom. subm.
 - non-zero mutual supersymmetry explicit check in toroidal model

Features of X5-planes

- Fixed locus of orbifold action with additional $(-1)^{F_L}$ factor [Kutasov 96] [Sen 96 98][Bergman, Gaberdiel 98] [Hellerman 05]
- S-duality: $(-1)^{F_L} \leftrightarrow \Omega_p$
- An X5-plane is S-dual to an O5-plane with one D5-brane (and its image D5')
- No net tadpole
- The twisted sector yields a massless $U(1) \iff$ gauge symmetry on single D5
- Stable non-BPS states
 - \succ decay is forbidden by charge under the U(1)
 - S-dual to strings stretching between D5 and D5' across O5

Large interval limit and supersymmetry restoration

- As the interval grows large
 - KK modes become light
 - all excitations are accessible at low-energies
 - \blacktriangleright the boundary sector decouples and 4d $\mathcal{N}=1$ bulk supersymmetry is restored

Type IIB	Type IIA	M-theory
KK modes	winding strings	wrapped M2-branes

• Non-trivial enhancement in the quantum moduli space of M-theory

Spin(7) moduli space	\sim	Calabi-Yau moduli space
with vanishing fiber	=	with vanishing fiber

Conclusions

- Spin(7) manifolds from Calabi-Yau quotients
- Circle uplift interval uplift
- Resulting picture

4d $\mathcal{N} = 1$ bulk sector		$3d \mathcal{N} = 1$
	coupled to	localized objects at the
		boundaries of the interval

- Supersymmetry is restored in the limit of infinite interval
- Type IIB weak-coupling limit
 - five-planes (X5, O5) at the ends of the interval
 - exotic three-planes at the ends of the interval
 - ... (other possible cases?)

Outlook

- Closer look at charged matter
 - massive in the Coulomb branch —> not accessible from supergravity
 - weak-coupling: intersecting D7-branes —> explicit string constructions
- Resolution of Spin(7) quotient singularities
 - weak-coupling picture can provide hints
 - e.g. Type IIB: O5 Type IIA: O6 M-theory: Atiyah-Hitchin space
- Extend the weak-coupling to more exotic setups (e.g. Klein bottle fiber)
- Explore extensions to models with more phenomenological features
 - no dilution of susy breaking in F-theory limit?
 - high-scale susy breaking?
 - applications of stable non-BPS objects?

Thank you for your attention