

LBNE

Justin Evans University of Manchester

MANCHESTER 1824 The University of Manchester Neutrino oscillations

CP violation

Can leptogenesis explain the matter-antimatter asymmetry?

LBNE

The Long-Baseline Neutrino Experiment

The University of Manchester

Ray Davis

Sanford Underground Research Facility

The Homestake Mine
South Dakota

Formally home to Ray Davis's solar neutrino detector

Now a highly active particle physics laboratory

v_e appearance

Normal Hierarchy

Inverted Hierarchy

The Far Detector

Based on ICARUS design > 35 kt fiducial volume \approx 50kt of liquid argon 4 GeV ve CC Actual detector design will evolve with input from new international partners, and may involve multiple modules of different designs.

The University of Manchester The liquid argon TPC

MANCHESTER

The University of Manchester

Mass hierarchy

Top of band: optimised beam, small systematics Bottom of band: unoptimised beam, poor systematics Exposure: 34 kt x 1.2 MW x 6 years

(3 years neutrino + 3 years antineutrino)

The University of Manchester

CP violation

Top of band: optimised beam, small systematics Bottom of band: unoptimised beam, poor systematics Exposure: 34 kt x 1.2 MW x 6 years

(3 years neutrino + 3 years antineutrino)

Non-standard interactions

NC NSI discovery reach (3σ C.L.)

$$\bar{V}_{\text{MSW}} = \sqrt{2}G_F N_e \begin{pmatrix} 1 + \epsilon_{ee}^m & \epsilon_{e\mu}^m & \epsilon_{e\tau}^m \\ \epsilon_{e\mu}^{m*} & \epsilon_{\mu\mu}^m & \epsilon_{\mu\tau}^m \\ \epsilon_{e\tau}^{m*} & \epsilon_{\mu\tau}^{m*} & \epsilon_{\tau\tau}^m \end{pmatrix}$$

Parameters governing the strength of BSM interactions between neutrinos and the Earth's matter

13

Proton decay

Decay Mode	Water Cherenkov		Liquid Argon TPC	
	Efficiency	Background	Efficiency	Background
$p \to K^+ \overline{\nu}$	19%	4	97%	1
$p ightarrow K^0 \mu^+$	10%	8	47%	< 2
$p ightarrow K^+ \mu^- \pi^+$			97%	1
$n ightarrow K^+ e^-$	10%	3	96%	< 2
$n ightarrow e^+ \pi^-$	19%	2	44%	0.8

Year

Liquid argon TPCs are particularly good at reconstructing kaon decay modes

Core-collapse supernovae

99% of the proto-neutron star's energy goes into neutrinos

SN at galactic core (10 kpc) gives several thousand interactions in the 35 kt Far Detector in tens of seconds

> ms timing precision on the reconstruction

Neutrinos from ~2000 Milky Way supernovae are already on their way

Supernovae

Timescale

Project	2015	2020	2025	2030	2035
Currently operating					
Large Projects					
Mu2e					
LHC: Phase 1 upgrade					
HL-LHC					
LBNF					
ILC					

DoE timescale created by the P5 panel

Summary

LBNE is the US's flagship particle physics project for the next decade

- > 35 kt, underground liquid argon far detector
- > 1.2 MW beam at turn-on

Strong and varied physics programme

- > Neutrino mass hierarchy
- CP violation
- Non-standard interactions
- Proton decay
- Core-collapse supernovae
- And much more…