

Neutrino masses in RPV models with extra pairs of Higgs doublets

arXiv:1401.1818 JHEP04(2014)033 work in collaboration with Y. Grossman

SUSY 2014, Manchester, 22th July 2014

Outline

- Motivation for the model
 - supersymmetry
 - RPV
 - neutrinos
 - extra pairs of Higgs doublets
- Neutrinos in RPV models: tree level contribution
 - bounds on small RPV
 - contributions to the mass matrix
- Neutrinos in RPV models: loop level
 - small RPV
 - possible new effects
- Conclusions

Neutrino experimental data:

 $\Delta m_{32}^2 = (2.32^{+0.12}_{-0.08}) \times 10^{-3} \,\mathrm{eV}^2, \qquad \Delta m_{21}^2 = (7.5 \pm 0.20) \times 10^{-5} \,\mathrm{eV}^2, \\ \sin^2(2\theta_{32}) > 0.95, \quad \sin^2(2\theta_{12}) = 0.857 \pm 0.024, \quad \sin^2(2\theta_{13}) = 0.095 \pm 0.010$

From: solar, detector & atmospheric neutrino experiments

Standard model is NOT the theory of everything

2nd round LHC, KEEP other models. CALM large amount of data to analyze... OOK FOR

AND

SUSY

SUSY 2014

R-Parity: $(-1)^{R}$, R=2S+3B+L

- Proton decay @ dim 5

- Neutral stabe fermion \Longrightarrow cold DM candidate $\,\chi^{^{0}}\,$

NOT NECESSARY FOR NATURALNESS!

R-Parity violation:

 $\chi^0 \rightarrow$ SM particles NO need for MET @ LHC searches!

RPV searches: distinctive final states with many particle states: high jet or lepton activity

New RPV terms in the superpotential:

$$W = -\mu \hat{L}_I \hat{H}_U + \frac{1}{2} \lambda_{IJm} \hat{L}_I \hat{L}_J \hat{E}_m + \lambda'_{Inm} \hat{L}_I \hat{Q}_n \hat{D}_m + \frac{1}{2} \lambda''_{lmn} \hat{D}_l \hat{D}_m \hat{Q}_n$$

Plus soft SUSY breaking terms

Generally allows for proton decay!

Leptonic RPV \implies majorana neutrino masses arise naturally! $\Delta L = 2$

Breaking the spectrum:

- more possibilities for s-partners mass spectrum — detection @ LHC

- rise Higgs mass without fine tuning ----- Sister Higgs

Alves, Fox '12 arXiv:1207.5499 arXiv:1207.5522

Clara Peset

General Issues:

- FCNC arise

- New RPV term

$$\frac{\tilde{\lambda}_m}{2} \epsilon_{ij} \left(\hat{H}_{D_1}^i \hat{H}_{D_2}^j - \hat{H}_{D_2}^i \hat{H}_{D_1}^j \right) \hat{E}_m$$

Neutrinos in RPV SUSY

Higgs down has the same quantum numbers as leptons is lindistinguishable!

MSSM:
$$\hat{L}_{\mu} = (\hat{H}_D, \hat{L}_1, \hat{L}_2, \hat{L}_3)$$

RPV terms:

$$W = \epsilon_{ij} \left[-\mu_{\alpha} \hat{L}^{i}_{\alpha} \hat{H}^{j}_{U} + \frac{1}{2} \lambda_{\alpha\beta m} \hat{L}^{i}_{\alpha} \hat{L}^{j}_{\beta} \hat{E}_{m} + \lambda'_{\alpha nm} \hat{L}^{i}_{\alpha} \hat{Q}^{j}_{n} \hat{D}_{m} \right]$$

$$V_{\text{soft}} = \left(M_{\tilde{L}}^2\right)_{\alpha\beta} \tilde{L}_{\alpha}^{i*} \tilde{L}_{\beta}^i - \left(\epsilon_{ij} B_{\alpha} \tilde{L}_{\alpha}^i H_U^j + \text{h.c.}\right) + \epsilon_{ij} \left[\frac{1}{2} A_{\alpha\beta m} \tilde{L}_{\alpha}^i \tilde{L}_{\beta}^j \tilde{E}_m + A_{\alpha nm}' \tilde{L}_{\alpha}^i \tilde{Q}_n^j \tilde{D}_m + \text{h.c.}\right]$$

EWSB characterized by:

$$v_u, \qquad v_d = \left(\sum v_\alpha^2\right)^{1/2}, \qquad \mu = \left(\sum \mu_\alpha^2\right)^{1/2}$$

$$v \equiv (|v_u|^2 + |v_d|^2)^{1/2} = \frac{2m_W}{g} = 246 \,\text{GeV}$$

SUSY 2014

Neutrinos in RPV SUSY

Higgs down has the same quantum numbers as leptons is lindistinguishable!

SUSY with extra pair of Higgses: $\hat{L}_I = (\hat{H}_{D_1}, \hat{H}_{D_2}, \hat{L}_1, \hat{L}_2, \hat{L}_3)$

RPV terms:

$$W = \epsilon_{ij} \left[-\mu_{1I} \hat{L}_{I}^{i} \hat{H}_{U_{1}}^{j} - \mu_{2I} \hat{L}_{I}^{i} \hat{H}_{U_{2}}^{j} + \frac{1}{2} \lambda_{IJm} \hat{L}_{I}^{i} \hat{L}_{J}^{j} \hat{E}_{m} + \lambda'_{Inm} \hat{L}_{I}^{i} \hat{Q}_{n}^{j} \hat{D}_{m} \right]$$

$$V_{\text{soft}} = \left(M_{\tilde{L}}^{2} \right)_{IJ} \tilde{L}_{I}^{i*} \tilde{L}_{J}^{i} - \left(\epsilon_{ij} B_{1I} \tilde{L}_{I}^{i} H_{U_{1}}^{j} + \text{h.c.} \right) - \left(\epsilon_{ij} B_{2I} \tilde{L}_{I}^{i} H_{U_{2}}^{j} + \text{h.c.} \right)$$
$$+ \epsilon_{ij} \left[\frac{1}{2} A_{IJm} \tilde{L}_{I}^{i} \tilde{L}_{J}^{j} \tilde{E}_{m} + A'_{Inm} \tilde{L}_{I}^{i} \tilde{Q}_{n}^{j} \tilde{D}_{m} + \text{h.c.} \right]$$

EWSB characterized by:

$$v_u = \left(v_{u_1}^2 + v_{u_2}^2\right)^{1/2}, \qquad v_d = \left(\sum v_I^2\right)^{1/2}, \qquad \mu_1 = \left(\sum \mu_{1I}^2\right)^{1/2}, \qquad \mu_2 = \left(\sum \mu_{2I}^2\right)^{1/2}$$

$$v \equiv (|v_u|^2 + |v_d|^2)^{1/2} = \frac{2m_W}{g} = 246 \,\text{GeV}$$

TL Neutrino mixing matrix

SUSY 2014

TL Neutrino mixing matrix

SUSY 2014

Loop contributions: λλ loops

MSSM:

$$[m_{\nu}]_{ij}^{(\lambda'\lambda')} \approx \sum_{l,k} \frac{3}{8\pi^2} \lambda'_{ilk} \lambda'_{jkl} \frac{m_{d_l} \Delta m_{\tilde{d}_k}^2}{m_{\tilde{d}_k}^2} \sim \sum_{l,k} \frac{3}{8\pi^2} \lambda'_{ilk} \lambda'_{jkl} \frac{m_{d_l} m_{d_k}}{\tilde{m}}$$

neglecting quark/lepton mixings

Supression factors:

2RPV COUPLINGS+LOOP FACTOR+2 QUARK MASSES

Irrelevant in most cases

Loop contributions: λλ loops

neglecting quark/lepton mixings

Supression factors:

2RPV COUPLINGS+LOOP FACTOR+2 LEPTON MASSES

Irrelevant in most cases

Loop contributions: BB loops

MSSM:

$$[m_{\nu}]_{ij}^{(BB)} = \sum_{\alpha,i,j} \frac{g^2 B_i B_j}{4\cos^2\beta} (Z_{\alpha 2} - Z_{\alpha 1} g'/g)^2 m_{\chi_{\alpha}} \left\{ I_4(m_h, m_{\tilde{\nu}_i}, m_{\tilde{\nu}_j}, m_{\chi_{\alpha}}) \cos^2(\alpha - \beta) + I_4(m_H, m_{\tilde{\nu}_i}, m_{\tilde{\nu}_j}, m_{\chi_{\alpha}}) \sin^2(\alpha - \beta) - I_4(m_A, m_{\tilde{\nu}_i}, m_{\tilde{\nu}_j}, m_{\chi_{\alpha}}) \right\},$$

Supression factors:

Grossman, Rakshit '04

SUSY 2014

Loop contributions: BB loops

SUSY with extra pair of Higgses:

$$\delta m_{\nu_{ij}}^{BB} = \sum_{\alpha} \frac{g^2}{4} \left(Z_N^{0\alpha} - \frac{g'}{g} Z_N^{1\alpha} \right)^2 \left[\tilde{B}_{ih} \tilde{B}_{jh} I_4(m_h, m_{\tilde{\nu}_i}, m_{\tilde{\nu}_j}, m_{\chi_\alpha}) \right]$$

$$+\sum_{k}\tilde{B}_{iH_{k}}\tilde{B}_{jH_{k}}I_{4}(m_{H_{k}},m_{\tilde{\nu}_{i}},m_{\tilde{\nu}_{j}},m_{\chi_{\alpha}})+\sum_{k}\tilde{B}_{iA_{k}}\tilde{B}_{jA_{k}}I_{4}(m_{A_{k}},m_{\tilde{\nu}_{i}},m_{\tilde{\nu}_{j}},m_{\chi_{\alpha}})\right]$$

Enlarged Higgs-like spectrum:

$$\frac{i}{\sqrt{2}}\tilde{B}_{i\{h,H_j,A_j\}} \equiv \frac{i}{\sqrt{2}} \left[B_{1i}\{Z_R^{00}, Z_R^{0j}, iZ_H^{0j}\} + B_{2i}\{Z_R^{10}, Z_R^{1j}, iZ_H^{1j}\} + (M_{\tilde{L}}^2)_{0(1+i)}\{Z_R^{20}, Z_R^{2j}, iZ_H^{2j}\} + (M_{\tilde{L}}^2)_{1(1+i)}\{Z_R^{30}, Z_R^{3j}, iZ_H^{3j}\} \right]$$

larger number of diagrams!

п

Supression factors:

2RPV COUPLINGS+LOOP FACTOR+CANCELLATIONS

Loop contributions: µB loops

MSSM:

$$[m_{\nu}]_{ij}^{(\mu B)} \sim \frac{g^2}{64\pi^2 \cos\beta} \frac{\mu_i B_j + \mu_j B_i}{\tilde{m}^2}$$
 (approximate expression)

- subleading in µ with respect to the tree level (if tree level is dominant)

Grossman, Rakshit hep-ph/0311310

Clara Peset

Supression factors:

2RPV COUPLINGS+LOOP FACTOR+CANCELLATIONS

SUSY 2014

III.Neutrinos in RPV SUSY: loop contributions

Loop contributions: µB loops

SUSY with extra pair of Higgses:

$$\delta m_{\nu ij}^{\ \mu B} \sim \sum_{\alpha,\beta} \frac{g^2}{16\pi^2} \left(\tilde{\mu}_{i\alpha} \tilde{B}_{jh} + \sum_k \tilde{\mu}_{i\alpha} \tilde{B}_{jH_k} + \sum_k \tilde{\mu}_{i\alpha} \tilde{B}_{jA_k} \right)$$
$$+ \tilde{\mu}_{j\alpha} \tilde{B}_{ih} + \sum_k \tilde{\mu}_{j\alpha} \tilde{B}_{iH_k} + \sum_k \tilde{\mu}_{j\alpha} \tilde{B}_{iA_k} \right)$$

- subleading in µ with respect to the tree level (if tree level is dominant)

Supression factors:

2RPV COUPLINGS+LOOP FACTOR+CANCELLATIONS

Contributions from new term

$$\frac{\tilde{\lambda}_m}{2} \epsilon_{ij} \left(\hat{H}_{D_1}^i \hat{H}_{D_2}^j - \hat{H}_{D_2}^i \hat{H}_{D_1}^j \right) \hat{E}_m$$

less constrained than usual RPV couplings

NO ONE LOOP EFFECTS

No neutrinos involved in the vertex RPV in charged sector

 $\chi = \frac{\chi}{\chi}$

Topological argument:

Clara Peset

Contributions from new term

SEPARABLE TWO LOOP DIAGRAMS

SUSY 2014

Contributions from new term

NON- SEPARABLE TWO LOOP DIAGRAMS

Complicated loop functions involving fermionic — **Solved numerically** propagators

$$\begin{split} [m_{\nu}]_{ij}^{\mathrm{NS},\tilde{\lambda}\tilde{\lambda}} &\approx \frac{60.48}{256\pi^4} g^2 \tilde{\lambda}_i^* \tilde{\lambda}_j^* \frac{m_{l_i} m_{l_j}}{\tilde{m}} \\ [m_{\nu}]_{ij}^{\mathrm{NS},\tilde{\lambda}\tilde{B}} &\approx -\sum_{i} \frac{15.12}{256\pi^4} g^3 \tilde{\lambda}_i^* \tilde{B}_{jk} \frac{m_{l_i}}{\tilde{m}^2} \\ [m_{\nu}]_{ij}^{\mathrm{NS},\tilde{B}\tilde{B}} &\approx \sum_{k,l} \frac{3.80}{256\pi^4} g^2 \frac{\tilde{B}_{il} \tilde{B}_{jk}}{\tilde{m}^3} \end{split}$$

$$2 \text{ lepton Yukawas}$$

2RPV COUPLINGS+2LOOP FACTOR+

Supression factors:

0 lepton Yukawa

1 lepton Yukawa

SUSY 2014

Summary

Neutrino masses in RPV MSSM

- RPV SUSY models provide an alternative to usual seesaw mechanism

- Naturally generate mild hierarchichal masses with large mixing angles: only one neutrino gets mass at tree level

- Need small RPV couplings: several suppression factors relative importance?

Neutrino masses in RPV SUSY with extra HD

- Adding pairs of Higgs doublets makes a new term HHE: contributes at two loops

- The extra pairs of Higgs doublets do not change the fact that only one neutrino gets mass at tree level

The lepton Yukawa coupling controls the suppression
 If the couplings are of the same order, it governs the suppression
 If λ is the only significant coupling, it always comes with a Yukawa

The results here exposed can be extended to similar models like dRPV

THANK YOU!

Extra: 2 beta decay

DOUBLE BETHA DECAY:

